Tree wavelet approximations with applications
暂无分享,去创建一个
[1] M. Birman,et al. PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .
[2] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[3] É. A. Storozhenko,et al. Jackson's theorem in the spaces Lp(Rk), 0 , 1978 .
[4] R. DeVore,et al. Interpolation of Besov-Spaces , 1988 .
[5] R. DeVore,et al. Degree of Adaptive Approximation , 1990 .
[6] R. DeVore,et al. Compression of wavelet decompositions , 1992 .
[7] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[8] C. Micchelli,et al. Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets , 1994 .
[9] V. Temlyakov,et al. On bestm-term approximations and the entropy of sets in the spaceL1 , 1994 .
[10] Ronald A. DeVore,et al. Some remarks on greedy algorithms , 1996, Adv. Comput. Math..
[11] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[12] S. Mallat,et al. Adaptive greedy approximations , 1997 .
[13] Yuesheng Xu,et al. Reconstruction and Decomposition Algorithms for Biorthogonal Multiwavelets , 1997, Multidimens. Syst. Signal Process..
[14] V. Temlyakov. Greedy Algorithm and m -Term Trigonometric Approximation , 1998 .
[15] Vladimir N. Temlyakov,et al. The best m-term approximation and greedy algorithms , 1998, Adv. Comput. Math..
[16] Wolfgang Dahmen,et al. Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.
[17] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[18] I. Daubechies,et al. Tree Approximation and Optimal Encoding , 2001 .
[19] Wolfgang Dahmen,et al. Approximation Classes for Adaptive Methods , 2002 .
[20] Richard G. Baraniuk,et al. Near Best Tree Approximation , 2002, Adv. Comput. Math..
[21] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[22] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..
[23] Wolfgang Dahmen,et al. Sparse Evaluation of Compositions of Functions Using Multiscale Expansions , 2003, SIAM J. Math. Anal..
[24] Yuesheng Xu,et al. Adaptive Wavelet Methods for Elliptic Operator Equations with Nonlinear Terms , 2003, Adv. Comput. Math..