Tree wavelet approximations with applications

We construct a tree wavelet approximation by using a constructive greedy scheme (CGS). We define a function class which contains the functions whose piecewise polynomial approximations generated by the CGS have a prescribed global convergence rate and establish embedding properties of this class. We provide sufficient conditions on a tree index set and on bi-orthogonal wavelet bases which ensure optimal order of convergence for the wavelet approximations encoded on the tree index set using the bi-orthogonal wavelet bases. We then show that if we use the tree index set associated with the partition generated by the CGS to encode a wavelet approximation, it gives optimal order of convergence.

[1]  M. Birman,et al.  PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .

[2]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[3]  É. A. Storozhenko,et al.  Jackson's theorem in the spaces Lp(Rk), 0 , 1978 .

[4]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[5]  R. DeVore,et al.  Degree of Adaptive Approximation , 1990 .

[6]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[7]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[8]  C. Micchelli,et al.  Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets , 1994 .

[9]  V. Temlyakov,et al.  On bestm-term approximations and the entropy of sets in the spaceL1 , 1994 .

[10]  Ronald A. DeVore,et al.  Some remarks on greedy algorithms , 1996, Adv. Comput. Math..

[11]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[12]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[13]  Yuesheng Xu,et al.  Reconstruction and Decomposition Algorithms for Biorthogonal Multiwavelets , 1997, Multidimens. Syst. Signal Process..

[14]  V. Temlyakov Greedy Algorithm and m -Term Trigonometric Approximation , 1998 .

[15]  Vladimir N. Temlyakov,et al.  The best m-term approximation and greedy algorithms , 1998, Adv. Comput. Math..

[16]  Wolfgang Dahmen,et al.  Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.

[17]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[18]  I. Daubechies,et al.  Tree Approximation and Optimal Encoding , 2001 .

[19]  Wolfgang Dahmen,et al.  Approximation Classes for Adaptive Methods , 2002 .

[20]  Richard G. Baraniuk,et al.  Near Best Tree Approximation , 2002, Adv. Comput. Math..

[21]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[22]  Wolfgang Dahmen,et al.  Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..

[23]  Wolfgang Dahmen,et al.  Sparse Evaluation of Compositions of Functions Using Multiscale Expansions , 2003, SIAM J. Math. Anal..

[24]  Yuesheng Xu,et al.  Adaptive Wavelet Methods for Elliptic Operator Equations with Nonlinear Terms , 2003, Adv. Comput. Math..