Minimum cost time-varying network flow problems

This paper deals with a general minimum cost dynamic flow problem in a discrete time model with time-varying transit times, transit costs, transit capacities, storage costs, and storage capacities. For this problem, an algorithm of time complexity O(V nT(n+T)) is presented, where V is an upper bound on the total supply, n is the number of nodes, and T denotes the given time horizon of the dynamic flow problem. The algorithm is a discrete-time version of the successive shortest path algorithm.

[1]  Maria Grazia Scutellà,et al.  Dynamic shortest paths minimizing travel times and costs , 2001, Networks.

[2]  Eric V. Denardo,et al.  Flows in Networks , 2011 .

[3]  Warren B. Powell,et al.  Stochastic and dynamic networks and routing , 1995 .

[4]  Éva Tardos,et al.  “The quickest transshipment problem” , 1995, SODA '95.

[5]  Chak-Kuen Wong,et al.  Time-varying minimum cost flow problems , 2001, Eur. J. Oper. Res..

[6]  Vardges Melkonian Flows in dynamic networks with aggregate arc capacities , 2007, Inf. Process. Lett..

[7]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[8]  Edward Minieka,et al.  Maximal, Lexicographic, and Dynamic Network Flows , 1973, Oper. Res..

[9]  Bruce Hoppe,et al.  Efficient Dynamic Network Flow Algorithms , 1995 .

[10]  Jay E. Aronson,et al.  A survey of dynamic network flows , 1989 .

[11]  W. L. Wilkinson,et al.  An Algorithm for Universal Maximal Dynamic Flows in a Network , 1971, Oper. Res..

[12]  Marco A. Duran,et al.  Logistics for world-wide crude oil transportation using discrete event simulation and optimal control , 2004, Comput. Chem. Eng..

[13]  Gerhard J. Woeginger,et al.  Minimum-cost dynamic flows: The series-parallel case , 2004, Networks.

[14]  Elise Miller-Hooks,et al.  On Solving Quickest Time Problems in Time-Dependent, Dynamic Networks , 2004, J. Math. Model. Algorithms.

[15]  D. R. Fulkerson,et al.  Constructing Maximal Dynamic Flows from Static Flows , 1958 .

[16]  Éva Tardos,et al.  Efficient continuous-time dynamic network flow algorithms , 1998, Oper. Res. Lett..

[17]  Ariel Orda,et al.  Minimum weight paths in time-dependent networks , 1991, Networks.

[18]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[19]  Chak-Kuen Wong,et al.  Time-varying shortest path problems with constraints , 1997, Networks.

[20]  Martin Skutella,et al.  Quickest Flows Over Time , 2007, SIAM J. Comput..

[21]  Martin Skutella,et al.  Multicommodity flows over time: Efficient algorithms and complexity , 2003, Theor. Comput. Sci..

[22]  Martin Skutella,et al.  An Introduction to Network Flows over Time , 2008, Bonn Workshop of Combinatorial Optimization.

[23]  Martin Skutella,et al.  Flows over time with load-dependent transit times , 2002, SODA '02.

[24]  Ismail Chabini,et al.  Discrete Dynamic Shortest Path Problems in Transportation Applications: Complexity and Algorithms with Optimal Run Time , 1998 .

[25]  Stuart E. Dreyfus,et al.  An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..

[26]  Martin Skutella,et al.  Minimum cost flows over time without intermediate storage , 2003, SODA '03.

[27]  S. Pallottino,et al.  Shortest Path Algorithms in Transportation models: classical and innovative aspects , 1997 .

[28]  Ariel Orda,et al.  Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length , 1990, JACM.

[29]  K. Cooke,et al.  The shortest route through a network with time-dependent internodal transit times , 1966 .

[30]  Robert L. Smith,et al.  Fastest Paths in Time-dependent Networks for Intelligent Vehicle-Highway Systems Application , 1993, J. Intell. Transp. Syst..