Advances in Optical Fiber Communications: An Historical Perspective

Following a decade of intensive research, optical fiber transmission emerged in the late 1970's as a major innovation in telecommunications. This paper reviews the progress in the field of optical fiber communication. Advances in the areas of fibers, cables, passive components, active devices, and systems are presented in historical perspective. Recent research and development accomplishments that are likely to have important impact on future systems are emphasized.

[1]  Tetsuro Yabuta,et al.  Studies on designing of submarine optical fiber cable , 1982 .

[2]  K. Furuya,et al.  Polarization control on output of single-mode optical fibers , 1981 .

[3]  V. Diadiuk,et al.  Avalanche multiplication and noise characteristics of low‐dark‐current GaInAsP/InP avalanche photodetectors , 1980 .

[4]  W. Tomlinson,et al.  Wavelength multiplexing in multimode optical fibers. , 1977, Applied optics.

[5]  Yoshihisa Yamamoto,et al.  Coherent optical fiber transmission systems , 1981 .

[6]  S. Kobayashi,et al.  Optical FM signal amplification by injection locked and resonant type semiconductor laser amplifiers , 1982 .

[7]  D. Marcuse,et al.  Low dispersion single-mode fiber transmission - The question of practical versus theoretical maximum transmission bandwidth , 1981, IEEE Journal of Quantum Electronics.

[8]  A. Dentai,et al.  Power and modulation bandwidth of gaAs-AlGaAs high-radiance LED's for optical communication systems , 1978 .

[9]  Osamu Wada,et al.  High radiance InGaAsP/InP lensed LED́s for optical communication systems at 1.2-1.3 µm , 1981 .

[10]  D.C. Gloge,et al.  Multimode-fiber technology for digital transmission , 1980, Proceedings of the IEEE.

[11]  M.I. Schwartz,et al.  Fiber cable design and characterization , 1980, Proceedings of the IEEE.

[12]  M. Asada,et al.  The temperature dependence of the threshold current of GaInAsP/InP DH lasers , 1981, IEEE Journal of Quantum Electronics.

[13]  D. Marcuse Loss analysis of single-mode fiber splices , 1977, The Bell System Technical Journal.

[14]  O. E. DeLange,et al.  Optical heterodyne detection , 1968, IEEE Spectrum.

[15]  D. Payne,et al.  Zero material dispersion in optical fibres , 1975 .

[17]  Perturbation theory of a doubly clad optical fiber with a low-index inner cladding , 1975 .

[18]  K. Nawata,et al.  Multimode and single-mode fiber connectors technology , 1980 .

[19]  B. I. Miller,et al.  Small-area, double-heterostructure aluminum-gallium arsenide electroluminescent diode sources for optical-fiber transmission lines , 1971 .

[20]  S. Personick,et al.  Applications for quantum amplifiers in simple digital optical communication systems , 1973 .

[21]  A. Bergh,et al.  Optical sources for fiber transmission systems , 1980, Proceedings of the IEEE.

[22]  L. Cohen,et al.  Tailoring the shapes of dispersion spectra to control bandwidths in single-mode fibers. , 1982, Optics letters.

[23]  I. Griffith,et al.  GaInAsP/InP fast, high-radiance, 1.05-1.3-µm wavelength LED's with efficient lens coupling to small numerical aperture Silica optical fibers , 1979, IEEE Transactions on Electron Devices.

[24]  J. Stone,et al.  Reduction of loss due to OH in optical fibres by a two-step OH - OD exchange process , 1982 .

[25]  I. Hayashi,et al.  JUNCTION LASERS WHICH OPERATE CONTINUOUSLY AT ROOM TEMPERATURE , 1970 .

[26]  T. Izawa,et al.  Materials and processes for fiber preform fabrication—Vapor-phase axial deposition , 1980, Proceedings of the IEEE.

[27]  T. Kimura,et al.  2 Gbit/s optical transmission experiments at 1.3 μm with 44 km single-mode fibre , 1981 .

[28]  S. L. Miller Avalanche Breakdown in Germanium , 1955 .

[29]  M. Saruwatari,et al.  Optical Componentry Utilized in Field Trial of Single-Mode Fiber Long-Haul Transmission , 1982 .

[30]  D. Marcuse,et al.  Effects of profile deformations on fiber bandwidth. , 1979, Applied optics.

[31]  Leonard George Cohen,et al.  Low-loss quadruple-clad single-mode lightguides with dispersion below 2 ps/km nm over the 1.28 μm–1.65 μm wavelength range , 1982 .

[32]  M. Drouillon,et al.  A. M. A. , 2019, California state journal of medicine.

[33]  S. R. Forrest,et al.  A high gain In0.53Ga0.47As/InP avalanche photodiode with no tunneling leakage current , 1981 .

[34]  D. Keck,et al.  On the ultimate lower limit of attenuation in glass optical waveguides , 1973 .

[35]  Won-Tien Tsang,et al.  Ultra-low threshold, graded-index waveguide, separate confinement, CW buried-heterostructure lasers , 1982 .

[36]  Richard E. Wagner,et al.  Transmission experiments through 101 km and 84 km of single-mode fibre at 274 Mbit/s and 420 Mbit/s , 1982 .

[37]  C.D. Anderson,et al.  An undersea communication system using fiberguide cables , 1980, Proceedings of the IEEE.

[38]  W. C. Young,et al.  PRECISION TRANSFER MOLDED SINGLE FIBER OPTIC CONNECTOR AND ENCAPSULATED CONNECTORIZED DEVICES , 1977 .

[39]  R. Chin,et al.  The GaAlAsSb quaternary and GaAlSb ternary alloys and their application to infrared detectors , 1981 .

[40]  Leonard George Cohen,et al.  Tailoring zero chromatic dispersion into the 1.5-1.6 μm low-loss spectral region of single-mode fibres , 1979 .

[41]  John B. MacChesney,et al.  B.S.T.J. brief: Optical waveguides with very low losses , 1974 .

[42]  P. E. Blaszyk,et al.  High-bandwidth production fibers fabricated with the IVD process , 1982 .

[43]  Amnon Yariv,et al.  A monolithically integrated optical repeater , 1979 .

[44]  G. J. Cannell,et al.  Low-loss splicing of a 62.4 km single-mode-fibre link , 1982 .

[45]  T. Nakahara,et al.  Optical cable design and characterization in Japan , 1980, Proceedings of the IEEE.

[46]  J. Yamada,et al.  1.55 μm optical transmission experiments at 2 Gbit/s using 51.5 km dispersion-free fibre , 1982 .

[47]  H. Melchior,et al.  Signal and noise response of high speed germanium avalanche photodiodes , 1966 .

[48]  C. A. Burrus,et al.  Improved Two Wavelength Demultiplexing InGaAsP Photodetector , 1980, Integrated and Guided Wave Optics.

[49]  G. Heydt,et al.  Optical Digital High-Speed Transmission: General Considerations and Experimental Results , 1982 .

[50]  C. Henry,et al.  InGaAsP/InP (1.3 μm) buried-crescent lasers with separate optical confinement , 1982 .

[51]  G. Henshall,et al.  Nonradiative carrier loss and temperature sensitivity of threshold in 1.27 μm (GaIn)(AsP)/InP d.h. lasers , 1980 .

[52]  W. C. Young,et al.  BICONIC SINGLE-MODE CONNECTORS WITH INSERTION LOSSES BELOW 0.3dB , 1982 .

[53]  T. P. Lee,et al.  Measuring high-bandwidth fibres in the 1.3 μm region with picosecond ingaasp injection lasers and ultrafast ingaas detectors , 1981 .

[54]  Hiroshi Ishikawa,et al.  V-grooved substrate buried heterostructure InGaAsP/InP laser , 1981 .

[55]  R. Olshansky Multiple-a Index Profiles , 1979 .

[56]  P. J. Chidgey,et al.  102 km optical fibre transmission experiments at 1.52 μm using an external cavity controlled laser transmitter module , 1982 .

[57]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[58]  Y. Sasaki,et al.  Polarization-maintaining and absorption-reducing fibers , 1982 .

[59]  W. E. Krag,et al.  SEMICONDUCTOR MASER OF GaAs , 1962 .

[60]  S. Personick New results on avalanche multiplication statistics with applications to optical detection , 1971 .

[61]  J. Midwinter,et al.  Studies of monomode long wavelength fiber systems at the British Telecom Research Laboratories , 1981 .

[62]  Tingye Li,et al.  Optical Fiber Communication-The State of the Art , 1978, IEEE Trans. Commun..

[63]  J. MacChesney,et al.  An overview of the modified chemical vapor deposition (MCVD) process and performance , 1982, IEEE Journal of Quantum Electronics.

[64]  H. Kogelnik,et al.  STIMULATED EMISSION IN A PERIODIC STRUCTURE , 1971 .

[65]  Zero total dispersion in single-mode optical fibers over an extended spectral range , 1982 .

[66]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[67]  Kam Y. Lau,et al.  Recent developments in monolithic integration of InGaAsP/InP optoelectronic devices , 1982 .

[68]  J. E. Goell,et al.  A 274-Mb/s optical-repeater experiment employing a GaAs laser , 1973 .

[69]  T. Ito,et al.  Transmission experiments in the 1.2-1.6-µm wavelength region using graded-index optical-fiber cables , 1979 .

[70]  T. Okoshi,et al.  Heterodyne and Coherent Optical Fiber Communications: Recent Progress , 1982 .

[71]  Federico Capasso,et al.  Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio , 1982 .

[72]  K. Nassau The material dispersion zero in infrared optical waveguide materials , 1981, The Bell System Technical Journal.

[73]  D. B. Keck,et al.  Attenuation of multimode glass optical waveguides , 1972 .

[74]  W. Dumke,et al.  STIMULATED EMISSION OF RADIATION FROM GaAs p‐n JUNCTIONS , 1962 .

[75]  Iwao Hatakeyama,et al.  Fusion splices for single-mode optical fibers (A) , 1978 .

[76]  Gd Giok-Djan Khoe,et al.  Single-mode fiber connector using core-centered ferrules , 1982 .

[77]  K. Ogawa,et al.  Small area ingaas/inp p-i-n photodiodes: fabrication, characteristics and performance of devices in 274 mb/s and 45 mb/s lightwave receivers at 1.31 μm wavelength , 1980 .

[78]  H. Namizaki,et al.  Low threshold InGaAsP/InP buried crescent laser with double current confinement structure , 1981 .