An evaluation of the statistical convertibility of Function Points into COSMIC Function Points

Since the introduction of COSMIC Function Points, the problem of converting historical data measured using traditional Function Points into COSMIC measures have arisen. To this end, several researchers have investigated the possibility of identifying the relationship between the two measures by means of statistical methods. This paper aims at improving statistical convertibility of Function Points into COSMIC Function Points by improving previous work with respect to aspects—like outlier identification and exclusion, model non-linearity, applicability conditions, etc.—which up to now were not adequately considered, with the purpose of confirming, correcting or enhancing current models. Available datasets including software sizes measured both in Function Points and COSMIC Function Points were analyzed. The role of outliers was studied; non linear models and piecewise linear models were derived, in addition to linear models. Models based on transactions only were also derived. Confidence intervals were used throughout the paper to assess the values of the models’ parameters. The dependence of the ratio between Function Points and COSMIC Function Points on size was studied. The union of all the available datasets was also studied, to overcome problems due to the relatively small size of datasets. It is shown that outliers do affect the linear models, typically increasing the slope of the regression lines; however, this happens mostly in small datasets: in the union of the available datasets there is no outlier that can influence the model. Conditions for the applicability of the statistical conversion are identified, in terms of relationships that must hold among the basic functional components of Function Point measures. Non-linear models are shown to represent well the relationships between the two measures, since the ratio between COSMIC Function Points and Function Points appears to increase with size. In general, it is confirmed that convertibility can be modeled by different types of models. This is a problem for practitioners, who have to choose one of these models. Anyway, a few practical suggestions can be derived from the results reported here. The model assuming that one FP is equal to one CFP causes the biggest conversion errors observed and is not generally supported. All the considered datasets are characterized by a ratio of transaction to data functions that is fairly constant throughout each dataset: this can be regarded as a condition for the applicability of current models; under this condition non-linear (log–log) models perform reasonably well. The fact that in Function Point Analysis the size of a process is limited, while it is not so in the COSMIC method, seems to be the cause of non linearity of the relationship between the two measures. In general, it appears that the conversion can be successfully based on transaction functions alone, without losing in precision.

[1]  Luigi Lavazza Convertibility of functional size measurements: new insights and methodological issues , 2009, PROMISE '09.

[2]  Alain Abran,et al.  Measurement convertibility : from function points to COSMIC-FFP , 2005 .

[3]  H. S. van Heeringen CHANGING FROM FPA TO COSMIC A TRANSITION FRAMEWORK , 2007 .

[4]  Capers Jones Backfiring: Converting Lines of Code to Function Points , 1995, Computer.

[5]  Marvin V. Zelkowitz,et al.  Measuring Productivity on High Performance Computers , 2005, IEEE METRICS.

[6]  Luigi Antonio Lavazza A Systematic Approach to the Analysis of Function Point - COSMIC Convertibility , 2010 .

[7]  C. Symons,et al.  The COSMIC Functional Size Measurement Method : Measurement Manual : The COSMIC Implementation Guide for ISO/IEC 19761:2011 , 2015 .

[8]  Emilia Mendes,et al.  Cost Estimation Techniques for Web Projects , 2007 .

[9]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[10]  Geng Liu,et al.  Analytical Convertibility of Functional Size Measures: A Tool-based Approach , 2012, 2012 Joint Conference of the 22nd International Workshop on Software Measurement and the 2012 Seventh International Conference on Software Process and Product Measurement.

[11]  Onur Demirörs,et al.  An experimental study on the conversion between IFPUG and COSMIC functional size measurement units , 2010, Inf. Softw. Technol..

[12]  Juan Jose Cuadrado-Gallego,et al.  IFPUG-COSMIC Statistical Conversion , 2008, 2008 34th Euromicro Conference Software Engineering and Advanced Applications.

[13]  Thomas Fetcke,et al.  The Warehouse Software Portfolio A Case Study in Functional Size Measurement , 1999 .

[14]  Juan Jose Cuadrado-Gallego,et al.  On the conversion between IFPUG and COSMIC software functional size units: A theoretical and empirical study , 2008, J. Syst. Softw..

[15]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[16]  Barbara A. Kitchenham,et al.  An empirical analysis of software productivity over time , 2005, 11th IEEE International Software Metrics Symposium (METRICS'05).

[17]  Ingunn Myrtveit,et al.  Human performance estimating with analogy and regression models: an empirical validation , 1998, Proceedings Fifth International Software Metrics Symposium. Metrics (Cat. No.98TB100262).

[18]  Onur Demirörs,et al.  Conceptual Association of Functional Size Measurement Methods , 2009, IEEE Software.

[19]  Roberto Meli,et al.  Early & Quick Function Point: Sizing More with Less , 2005, 11th IEEE International Software Metrics Symposium (METRICS'05).

[20]  Stephen G. MacDonell,et al.  What accuracy statistics really measure , 2001, IEE Proc. Softw..

[21]  Alain Abran,et al.  Convertibility Between IFPUG and COSMIC Functional Size Measurements , 2007, PROFES.

[22]  Emilia Mendes,et al.  Why comparative effort prediction studies may be invalid , 2009, PROMISE '09.

[23]  Frank Vogelezang Applicability of COSMIC Full Function Points in an administrative environment Experiences of an early adopter , 2003 .

[24]  Alain Abran,et al.  Convertibility of function points to COSMIC-FPP: identification and analysis fo functional outliers , 2006 .

[25]  Charles R. Symons,et al.  Function Point Analysis: Difficulties and Improvements , 1988, IEEE Trans. Software Eng..

[26]  Barbara A. Kitchenham The Problem with Function Points , 1997, IEEE Software.

[27]  Sandro Morasca,et al.  Convertibility of Function Points into COSMIC Function Points: A study using Piecewise Linear Regression , 2011, Inf. Softw. Technol..