Snookie: An Autonomous Underwater Vehicle with Artificial Lateral-Line System

In this work we present Snookie, an autonomous underwater vehicle with an artificial lateral-line system. Integration of the artificial lateral-line system with other sensory modalities is to enable the robot to perform behaviors as observed in fish, such as obstacle detection and geometrical-shape reconstruction by means of hydrodynamic images. The present chapter consists of three sections devoted to design of the robot, its lateral-line system, and processing of the ensuing flow-sensory data. The artificial lateral-line system of Snookie is presented in detail, together with a simple version of a flow reconstruction algorithm applicable to both the artificial lateral-line system and, e.g. the blind Mexican cave fish. More in particular, the first section deals with the development of the autonomous underwater vehicle Snookie, which provides the functionality and is tailored to the requirements of the artificial lateral-line system. The second section is devoted to the implementation of the artificial lateral-line system that consists of an array of hot thermistor anemometers to be integrated in the nozzle. In the final section, the information processing ensuing from the flow sensors and leading to conclusions about the environment is presented. The measurement of the tangential velocities at the artificial lateral-line system together with the no-penetration condition provides the robot with Cauchy boundary conditions, so that the hydrodynamic mapping of potential flow onto the lateral line can be inverted. Through this inversion information is accessible from the flow around the artificial lateral line about objects in the neighbourhood, which alter the flow field.

[1]  Matthew J. McHenry,et al.  The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio) , 2008, Journal of Experimental Biology.

[2]  S. K. Gupta,et al.  Fluid Mechanics and its Applications , 2011 .

[3]  Sheryl Coombs,et al.  The Hydrodynamics and Structural Mechanics of the Lateral Line System , 2006 .

[4]  Douglas L. Jones,et al.  Artificial lateral line with biomimetic neuromasts to emulate fish sensing , 2010, Bioinspiration & biomimetics.

[5]  L. Herault,et al.  Physical-model based reconstruction of the global instantaneous velocity field from velocity measurement at a few points , 1995, Proceedings of the Workshop on Physics-Based Modeling in Computer Vision.

[6]  Wolf Hanke,et al.  The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry , 2004, Journal of Experimental Biology.

[7]  Leonard Meirovitch,et al.  Methods of analytical dynamics , 1970 .

[8]  Björn Mauck,et al.  Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina) , 2011, Journal of Experimental Biology.

[9]  Theresa Burt de Perera,et al.  Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus , 2004, Animal Behaviour.

[10]  Douglas L. Jones,et al.  Biomimetic Imaging of Flow Phenomena , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[11]  Murray S. Korman,et al.  Fundamentals of hot wire anemometry , 1986 .

[12]  Johan W. Berenschot,et al.  Fabrication of superficial neuromast inspired capacitive flow sensors , 2010 .

[13]  G. Kirchhoff Ueber die Bewegung eines Rotationskörpers in einer Flüssigkeit. , 1870 .

[14]  Horst Bleckmann,et al.  Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere , 2012, Journal of Comparative Physiology A.

[15]  H. Bleckmann,et al.  Hydrodynamic Trail-Following in Harbor Seals (Phoca vitulina) , 2001, Science.

[16]  A J Healey,et al.  The Present State of Autonomous Underwater Vehicle (AUV) Applications and Technologies , 2008 .

[17]  J. Leo van Hemmen,et al.  Estimating position and velocity of a submerged moving object by the clawed frog Xenopus and by fish—A cybernetic approach , 2005, Biological Cybernetics.

[18]  S. Coombs,et al.  The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. , 2001, The Journal of experimental biology.

[19]  F. Grasso,et al.  Tracking wakes: The nocturnal predatory strategy of piscivorous catfish , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  El-S. Hassan,et al.  Mathematical description of the stimuli to the lateral line system of fish, derived from a three-dimensional flow field analysis. III. The case of an oscillating sphere near the fish , 1993, Biological Cybernetics.

[21]  Shane P. Windsor,et al.  The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall , 2010, Journal of Experimental Biology.

[22]  C. Campenhausen,et al.  Detection of stationary objects by the blind Cave FishAnoptichthys jordani (Characidae) , 1981, Journal of comparative physiology.

[23]  Sheryl Coombs,et al.  Active wall following by Mexican blind cavefish (Astyanax mexicanus) , 2010, Journal of Comparative Physiology A.

[24]  J. Lang,et al.  Lateral-line-inspired MEMS-array pressure sensing for passive underwater navigation , 2007 .

[25]  J. Engel,et al.  Artificial Lateral Line And Hydrodynamic Object Tracking , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[26]  R. Blickhan,et al.  The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans , 1991, Journal of Comparative Physiology A.

[27]  Jacob Engelmann,et al.  Coding of lateral line stimuli in the goldfish midbrain in still and running water. , 2004, Zoology.

[28]  S. V. van Netten Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology. , 2006, Biological cybernetics.

[29]  Jeffrey H. Lang,et al.  Lateral-line inspired sensor arrays for navigation and object identification , 2011 .

[30]  Jelle Atema,et al.  The importance of the lateral line in nocturnal predation of piscivorous catfish , 2004, Journal of Experimental Biology.

[31]  Branislava Ćurčić-Blake,et al.  Rapid responses of the cupula in the lateral line of ruffe (Gymnocephalus cernuus) , 2005, Journal of Comparative Physiology A.

[32]  S. Coombs,et al.  Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). , 1994, The Journal of experimental biology.

[33]  H. Bleckmann,et al.  Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals , 2011, Beilstein journal of nanotechnology.

[34]  S. B. Childs,et al.  INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .

[35]  T. Teyke,et al.  Collision with and avoidance of obstacles by blind cave fishAnoptichthys jordani (Characidae) , 1985, Journal of Comparative Physiology A.

[36]  J. Feldman,et al.  DTNSRDC Revised Standarrd Submarine Equations of Motion , 1979 .

[37]  Joseph B. Keller,et al.  Axially symmetric potential flow around a slender body , 1967, Journal of Fluid Mechanics.

[38]  Lily D. Chambers,et al.  What information do Kármán streets offer to flow sensing? , 2011, Bioinspiration & biomimetics.

[39]  A. Tsinober,et al.  Hot Wire Anemometry , 1995 .

[40]  Nathan E. Murray,et al.  Estimation of the flowfield from surface pressure measurements in an open cavity , 2003 .

[41]  Sandra Hirche,et al.  Design of a Lateral-Line Sensor for an Autonomous Underwater Vehicle , 2009 .

[42]  S. Dijkgraaf THE FUNCTIONING and SIGNIFICANCE OF THE LATERAL‐LINE ORGANS , 1963, Biological reviews of the Cambridge Philosophical Society.

[43]  Joseph Yan,et al.  A review of biological, biomimetic and miniature force sensing for microflight , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[44]  Horst Bleckmann,et al.  Behavioral discrimination of water motions caused by moving objects , 2001, Journal of Comparative Physiology A.

[45]  Marie Schmidt Hydrodynamics And Sound , 2016 .

[46]  Horst Bleckmann,et al.  Brainstem lateral line responses to sinusoidal wave stimuli in still and running water. , 2002, The Journal of experimental biology.

[47]  Douglas L. Jones,et al.  Distant touch hydrodynamic imaging with an artificial lateral line , 2006, Proceedings of the National Academy of Sciences.

[48]  H. Bleckmann,et al.  Peripheral and central processing of lateral line information , 2008, Journal of Comparative Physiology A.

[49]  Julie Goulet,et al.  Object localization through the lateral line system of fish: theory and experiment , 2007, Journal of Comparative Physiology A.

[50]  Alexandr I. Korotkin,et al.  Added Masses of Ship Structures , 2008 .

[51]  Shane P. Windsor,et al.  The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: gliding parallel to a wall , 2010, Journal of Experimental Biology.

[52]  R. Cingolani,et al.  Stress-driven AlN cantilever-based flow sensor for fish lateral line system , 2011 .

[53]  Wolf Hanke,et al.  A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus , 2003, Journal of Experimental Biology.

[54]  Paolo Dario,et al.  A Novel Bioinspired PVDF Micro/Nano Hair Receptor for a Robot Sensing System , 2010, Sensors.

[55]  L. Whitcomb,et al.  A SURVEY OF UNDERWATER VEHICLE NAVIGATION : RECENT ADVANCES AND NEW CHALLENGES , 2006 .

[56]  Chang Liu,et al.  Micromachined biomimetic artificial haircell sensors , 2007, Bioinspiration & biomimetics.

[57]  H. Oertel Prandtl's essentials of fluid mechanics , 2004 .

[58]  Gabriel Weymouth,et al.  Hydrodynamic object recognition using pressure sensing , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  Thor I. Fossen,et al.  Guidance and control of ocean vehicles , 1994 .

[60]  Horst Bleckmann,et al.  Responses of brainstem lateral line units to different stimulus source locations and vibration directions , 2011, Journal of Comparative Physiology A.

[61]  Robert Bamler,et al.  Hydrodynamic object recognition: when multipoles count. , 2009, Physical review letters.

[62]  Horst Bleckmann,et al.  Lateral line system of fish. , 2009, Integrative zoology.

[63]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[64]  Sheryl Coombs,et al.  Dipole source localization by mottled sculpin. I. Approach strategies , 1997, Journal of Comparative Physiology A.

[65]  Douglas L. Jones,et al.  Multisensor Processing Algorithms for Underwater Dipole Localization and Tracking Using MEMS Artificial Lateral-Line Sensors , 2006, EURASIP J. Adv. Signal Process..

[66]  Sietse M van Netten,et al.  Source location encoding in the fish lateral line canal , 2006, Journal of Experimental Biology.

[67]  Shane P Windsor,et al.  Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus) , 2008, Journal of Experimental Biology.

[68]  Remco Wiegerink,et al.  Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors , 2013, Journal of The Royal Society Interface.

[69]  James F. Geer,et al.  Uniform asymptotic solutions for potential flow about a slender body of revolution , 1975, Journal of Fluid Mechanics.

[70]  Jacob Engelmann,et al.  Neural responses of goldfish lateral line afferents to vortex motions , 2006, Journal of Experimental Biology.

[71]  Sheryl Coombs,et al.  Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi) , 2009, Journal of Comparative Physiology A.

[72]  M. McHenry,et al.  Mechanical filtering by the boundary layer and fluid–structure interaction in the superficial neuromast of the fish lateral line system , 2008, Journal of Comparative Physiology A.

[73]  Takao Suzuki,et al.  Inverse-Imaging Method for Detection of a Vortex in a Channel , 2003 .

[74]  S. Coombs,et al.  Modeling and measuring lateral line excitation patterns to changing dipole source locations , 2004, Journal of Comparative Physiology A.

[75]  Horst Bleckmann,et al.  The functional significance of lateral line canal morphology on the trunk of the marine teleost Xiphister atropurpureus (Stichaeidae) , 2013, Journal of Comparative Physiology A.

[76]  S. Coombs,et al.  Dipole source localization by mottled sculpin. III. Orientation after site-specific, unilateral denervation of the lateral line system , 1998, Journal of Comparative Physiology A.

[77]  El-S. Hassan,et al.  Mathematical analysis of the stimulus for the lateral line organ , 1985, Biological Cybernetics.

[78]  Sandra Hirche,et al.  Biomimetic lateral-line system for underwater vehicles , 2010, 2010 IEEE Sensors.

[79]  Carrick Detweiler,et al.  AMOUR V: A Hovering Energy Efficient Underwater Robot Capable of Dynamic Payloads , 2010, Int. J. Robotics Res..

[80]  Sven Dykgraaf Untersuchungen über die Funktion der Seitenorgane an Fischen , 1933 .

[81]  Franz S. Hover,et al.  Development and Application of Distributed MEMS Pressure Sensor Array for AUV object Avoidance , 2009 .

[82]  Wolfgang Felix Strömungsmessung mit Thermistoren , 2004, Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie.

[83]  Yingchen Yang,et al.  Artificial lateral line canal for hydrodynamic detection , 2011 .

[84]  Sandra Hirche,et al.  Simulation of the Underwater Vehicle “Snookie”: Navigating like a Fish , 2010 .

[85]  T. Pitcher,et al.  The sensory basis of fish schools: Relative roles of lateral line and vision , 1980, Journal of comparative physiology.

[86]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[87]  Peter W. Bearman,et al.  A study of forces, circulation and vortex patterns around a circular cylinder in oscillating flow , 1988, Journal of Fluid Mechanics.

[88]  R. Fay,et al.  Hot-film anemometry for measuring lateral line stimuli. , 1989, The Journal of the Acoustical Society of America.

[89]  Yijun Liu Fast Multipole Boundary Element Method: Theory and Applications in Engineering , 2009 .

[90]  Horst Bleckmann,et al.  Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system , 2012, Biological Cybernetics.

[91]  Sheryl Coombs,et al.  Dipole source localization by the mottled sculpin II. The role of lateral line excitation patterns , 1997, Journal of Comparative Physiology A.

[92]  Edgar L. Piret,et al.  Hot Wire Anemometry. Solution of Some Difficulties in Measurement of Low Water Velocities. , 1950 .

[93]  Horst Bleckmann,et al.  Lateral line canal morphology and signal to noise ratio , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[94]  Douglas L. Jones,et al.  Flow Vision for Autonomous Underwater Vehicles via an Artificial Lateral Line , 2011, EURASIP J. Adv. Signal Process..

[95]  El-S. Hassan,et al.  Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis , 1992, Biological Cybernetics.

[96]  H. Bleckmann,et al.  Lateral line reception in still- and running water , 2002, Journal of Comparative Physiology A.

[97]  E. Hassan Hydrodynamic Imaging of the Surroundings by the Lateral Line of the Blind Cave Fish Anoptichthys jordani , 1989 .

[98]  李幼升,et al.  Ph , 1989 .

[99]  Poul Andersen,et al.  Hydrodynamics of Ship Propellers , 1993 .

[100]  Edward M. Lewandowski,et al.  The Dynamics of Marine Craft: Maneuvering and Seakeeping , 2003 .

[101]  J. Craggs Applied Mathematical Sciences , 1973 .

[102]  K. Helland,et al.  A high-performance low-cost constant-temperature hot-wire anemometer , 1983 .

[103]  Paul E. Patton,et al.  The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax) , 2009, Journal of Comparative Physiology A.

[104]  E. Hassan,et al.  On the discrimination of spatial intervals by the blind cave fish (Anoptichthys jordani) , 1986, Journal of Comparative Physiology A.

[105]  Nannan Chen,et al.  Hydrogel‐Encapsulated Microfabricated Haircells Mimicking Fish Cupula Neuromast , 2007 .

[106]  Jenhwa Guo,et al.  Artificial lateral line design for robotic fish , 2011, 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies.

[107]  H. Bleckmann,et al.  The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. , 2000, The Journal of experimental biology.

[108]  Julie Goulet,et al.  Wake tracking and the detection of vortex rings by the canal lateral line of fish. , 2009, Physical review letters.

[109]  C. Campenhausen,et al.  Discrimination between stationary objects by the blind cave fishAnoptichthys jordani (Characidae) , 1981, Journal of comparative physiology.

[110]  Christopher E. Brennen,et al.  A Review of Added Mass and Fluid Inertial Forces , 1982 .