On the asymptotic normality of the Legendre-Stirling numbers of the second kind

For the Legendre-Stirling numbers of the second kind asymptotic formulae are derived in terms of a local central limit theorem. Thereby, supplements of the recently published asymptotic analysis of the Chebyshev-Stirling numbers are established. Moreover, we provide results on the asymptotic normality and unimodality for modified Legendre-Stirling numbers.

[1]  Lance L. Littlejohn,et al.  The left-definite spectral theory for the classical Hermite differential equation , 2000 .

[2]  Thorsten Neuschel,et al.  Asymptotics of Stirling and Chebyshev‐Stirling Numbers of the Second Kind , 2014 .

[3]  Lance L. Littlejohn,et al.  A General Left-Definite Theory for Certain Self-Adjoint Operators with Applications to Differential Equations , 2002 .

[4]  Gi-Sang Cheon,et al.  r-Whitney numbers of Dowling lattices , 2012, Discret. Math..

[5]  Ira M. Gessel,et al.  Jacobi-Stirling polynomials and P-partitions , 2012, Eur. J. Comb..

[6]  Jiang Zeng,et al.  Combinatorial Interpretations of the Jacobi-Stirling Numbers , 2009, Electron. J. Comb..

[7]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[8]  Thorsten Neuschel,et al.  Euler–Frobenius numbers , 2013 .

[9]  George E. Andrews,et al.  The Jacobi-Stirling numbers , 2011, J. Comb. Theory, Ser. A.

[10]  Vladimir N. Sachkov,et al.  Probabilistic methods in combinatorial analysis: Contents , 1997 .

[11]  Eric S. Egge,et al.  Legendre-Stirling permutations , 2010, Eur. J. Comb..

[12]  George E. Andrews,et al.  A combinatorial interpretation of the Legendre-Stirling numbers , 2009 .

[13]  L. Carlitz,et al.  Asymptotic properties of eulerian numbers , 1972 .

[14]  Pietro Mongelli,et al.  Combinatorial Interpretations of Particular Evaluations of Complete and Elementary Symmetric Functions , 2011, Electron. J. Comb..

[15]  Sergey Kitaev,et al.  Boolean complexes for Ferrers graphs , 2010, Australas. J Comb..

[16]  F. Olver Asymptotics and Special Functions , 1974 .

[17]  Svante Janson,et al.  Euler-Frobenius numbers and rounding , 2013, 1305.3512.

[18]  Walter Van Assche,et al.  Asymptotics for Orthogonal Polynomials , 1987 .

[19]  G. Eisenstein Beiträge zu Theorie der elliptischen Functionen. VI. Genaue Untersuchungen der unendlichen Doppelproducte, aus welchen die elliptischen Functionen als Quotienten zusammengesetzt sind, und der mit ihnen zusammen , 1847 .

[20]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[21]  G. W.,et al.  Funktionentheorie I , 1914 .

[22]  T. Neumann Advanced Combinatorics The Art Of Finite And Infinite Expansions , 2016 .

[23]  L. Harper Stirling Behavior is Asymptotically Normal , 1967 .

[24]  Gangjoon Yoon,et al.  Jacobi-Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression , 2007 .

[25]  Mircea Merca A note on the Jacobi–Stirling numbers , 2014 .

[26]  George E. Andrews,et al.  The Legendre-Stirling numbers , 2011, Discret. Math..

[27]  Pietro Mongelli,et al.  Total positivity properties of Jacobi-Stirling numbers , 2012, Adv. Appl. Math..

[28]  V. V. Petrov Sums of Independent Random Variables , 1975 .