Analytical Low-Rank Compression via Proxy Point Selection

It has been known in potential theory that, for some kernels matrices corresponding to well-separated point sets, fast analytical low-rank approximation can be achieved via the use of proxy points. This proxy point method gives a surprisingly convenient way of explicitly writing out approximate basis matrices for a kernel matrix. However, this elegant strategy is rarely known or used in the numerical linear algebra community. It still needs clear algebraic understanding of the theoretical background. Moreover, rigorous quantifications of the approximation errors and reliable criteria for the selection of the proxy points are still missing. In this work, we use contour integration to clearly justify the idea in terms of a class of important kernels. We further provide comprehensive accuracy analysis for the analytical compression and show how to choose nearly optimal proxy points. The analytical compression is then combined with fast rank-revealing factorizations to get compact low-rank approximations and also to select certain representative points. We provide the error bounds for the resulting overall low-rank approximation. This work thus gives a fast and reliable strategy for compressing those kernel matrices. Furthermore, it provides an intuitive way of understanding the proxy point method and bridges the gap between this useful analytical strategy and practical low-rank approximations. Some numerical examples help to further illustrate the ideas.

[1]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[2]  Jianlin Xia,et al.  A Superfast Structured Solver for Toeplitz Linear Systems via Randomized Sampling , 2012, SIAM J. Matrix Anal. Appl..

[3]  Leslie Greengard,et al.  A Fast Direct Solver for Structured Linear Systems by Recursive Skeletonization , 2012, SIAM J. Sci. Comput..

[4]  E. Tyrtyshnikov Mosaic-Skeleton approximations , 1996 .

[5]  Christopher R. Anderson,et al.  An Implementation of the Fast Multipole Method without Multipoles , 1992, SIAM J. Sci. Comput..

[6]  W. Hackbusch,et al.  On H2-Matrices , 2000 .

[7]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[8]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[9]  Eric Darve,et al.  The black-box fast multipole method , 2009, J. Comput. Phys..

[10]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[11]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[12]  V. Rokhlin,et al.  A fast direct solver for boundary integral equations in two dimensions , 2003 .

[13]  Xiaobai Sun,et al.  A Matrix Version of the Fast Multipole Method , 2001, SIAM Rev..

[14]  JIANLIN XIA,et al.  Parallel Randomized and Matrix-Free Direct Solvers for Large Structured Dense Linear Systems , 2016, SIAM J. Sci. Comput..

[15]  Junichiro Makino Yet Another Fast Multipole Method without Multipoles-Pseudoparticle Multipole Method , 1999 .

[16]  Ming Gu,et al.  Subspace Iteration Randomization and Singular Value Problems , 2014, SIAM J. Sci. Comput..

[17]  Edmond Chow,et al.  An efficient method for block low-rank approximations for kernel matrix systems , 2018 .

[18]  Lexing Ying,et al.  A kernel independent fast multipole algorithm for radial basis functions , 2006, J. Comput. Phys..

[19]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[20]  Raymond H. Chan,et al.  A Fast Contour-Integral Eigensolver for Non-Hermitian Matrices , 2017, SIAM J. Matrix Anal. Appl..

[21]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[22]  JAMES VOGEL,et al.  Superfast Divide-and-Conquer Method and Perturbation Analysis for Structured Eigenvalue Solutions , 2016, SIAM J. Sci. Comput..

[23]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[24]  S. Lang Complex Analysis , 1977 .

[25]  Ping Tak Peter Tang,et al.  Feast Eigensolver for Non-Hermitian Problems , 2015, SIAM J. Sci. Comput..

[26]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[27]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[28]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[29]  Michael O'Neil,et al.  A new class of analysis-based fast transforms , 2007 .

[30]  J. Schneider,et al.  Literature survey on low rank approximation of matrices , 2017 .

[31]  Eric Darve,et al.  Cauchy Fast Multipole Method for General Analytic Kernels , 2014, SIAM J. Sci. Comput..

[32]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..

[33]  Jianlin Xia,et al.  Randomized Sparse Direct Solvers , 2013, SIAM J. Matrix Anal. Appl..

[34]  Robert A. van de Geijn,et al.  Householder QR Factorization With Randomization for Column Pivoting (HQRRP) , 2015, SIAM J. Sci. Comput..

[35]  Per-Gunnar Martinsson,et al.  An Accelerated Kernel-Independent Fast Multipole Method in One Dimension , 2007, SIAM J. Sci. Comput..

[36]  Victor Y. Pan,et al.  Transformations of Matrix Structures Work Again , 2013, 1303.0353.

[37]  S. Goreinov,et al.  The maximum-volume concept in approximation by low-rank matrices , 2001 .

[38]  N. Kishore Kumar,et al.  Literature survey on low rank approximation of matrices , 2016, ArXiv.

[39]  M. Gu,et al.  Strong rank revealing LU factorizations , 2003 .

[40]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[41]  Lexing Ying,et al.  A Recursive Skeletonization Factorization Based on Strong Admissibility , 2016, Multiscale Model. Simul..

[42]  V. Rokhlin,et al.  A fast algorithm for the inversion of general Toeplitz matrices , 2004 .

[43]  Shivkumar Chandrasekaran,et al.  A Superfast Algorithm for Toeplitz Systems of Linear Equations , 2007, SIAM J. Matrix Anal. Appl..

[44]  R. Kanwal Linear Integral Equations , 1925, Nature.