Analytical Low-Rank Compression via Proxy Point Selection
暂无分享,去创建一个
Jianlin Xia | Lexing Ying | Xin Ye | Lexing Ying | J. Xia | Xin Ye
[1] D. Zorin,et al. A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .
[2] Jianlin Xia,et al. A Superfast Structured Solver for Toeplitz Linear Systems via Randomized Sampling , 2012, SIAM J. Matrix Anal. Appl..
[3] Leslie Greengard,et al. A Fast Direct Solver for Structured Linear Systems by Recursive Skeletonization , 2012, SIAM J. Sci. Comput..
[4] E. Tyrtyshnikov. Mosaic-Skeleton approximations , 1996 .
[5] Christopher R. Anderson,et al. An Implementation of the Fast Multipole Method without Multipoles , 1992, SIAM J. Sci. Comput..
[6] W. Hackbusch,et al. On H2-Matrices , 2000 .
[7] Petros Drineas,et al. CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.
[8] Shivkumar Chandrasekaran,et al. A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..
[9] Eric Darve,et al. The black-box fast multipole method , 2009, J. Comput. Phys..
[10] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[11] Steffen Börm,et al. Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.
[12] V. Rokhlin,et al. A fast direct solver for boundary integral equations in two dimensions , 2003 .
[13] Xiaobai Sun,et al. A Matrix Version of the Fast Multipole Method , 2001, SIAM Rev..
[14] JIANLIN XIA,et al. Parallel Randomized and Matrix-Free Direct Solvers for Large Structured Dense Linear Systems , 2016, SIAM J. Sci. Comput..
[15] Junichiro Makino. Yet Another Fast Multipole Method without Multipoles-Pseudoparticle Multipole Method , 1999 .
[16] Ming Gu,et al. Subspace Iteration Randomization and Singular Value Problems , 2014, SIAM J. Sci. Comput..
[17] Edmond Chow,et al. An efficient method for block low-rank approximations for kernel matrix systems , 2018 .
[18] Lexing Ying,et al. A kernel independent fast multipole algorithm for radial basis functions , 2006, J. Comput. Phys..
[19] Per-Gunnar Martinsson,et al. On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..
[20] Raymond H. Chan,et al. A Fast Contour-Integral Eigensolver for Non-Hermitian Matrices , 2017, SIAM J. Matrix Anal. Appl..
[21] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[22] JAMES VOGEL,et al. Superfast Divide-and-Conquer Method and Perturbation Analysis for Structured Eigenvalue Solutions , 2016, SIAM J. Sci. Comput..
[23] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[24] S. Lang. Complex Analysis , 1977 .
[25] Ping Tak Peter Tang,et al. Feast Eigensolver for Non-Hermitian Problems , 2015, SIAM J. Sci. Comput..
[26] Jianlin Xia,et al. Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..
[27] Lloyd N. Trefethen,et al. The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..
[28] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[29] Michael O'Neil,et al. A new class of analysis-based fast transforms , 2007 .
[30] J. Schneider,et al. Literature survey on low rank approximation of matrices , 2017 .
[31] Eric Darve,et al. Cauchy Fast Multipole Method for General Analytic Kernels , 2014, SIAM J. Sci. Comput..
[32] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[33] Jianlin Xia,et al. Randomized Sparse Direct Solvers , 2013, SIAM J. Matrix Anal. Appl..
[34] Robert A. van de Geijn,et al. Householder QR Factorization With Randomization for Column Pivoting (HQRRP) , 2015, SIAM J. Sci. Comput..
[35] Per-Gunnar Martinsson,et al. An Accelerated Kernel-Independent Fast Multipole Method in One Dimension , 2007, SIAM J. Sci. Comput..
[36] Victor Y. Pan,et al. Transformations of Matrix Structures Work Again , 2013, 1303.0353.
[37] S. Goreinov,et al. The maximum-volume concept in approximation by low-rank matrices , 2001 .
[38] N. Kishore Kumar,et al. Literature survey on low rank approximation of matrices , 2016, ArXiv.
[39] M. Gu,et al. Strong rank revealing LU factorizations , 2003 .
[40] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[41] Lexing Ying,et al. A Recursive Skeletonization Factorization Based on Strong Admissibility , 2016, Multiscale Model. Simul..
[42] V. Rokhlin,et al. A fast algorithm for the inversion of general Toeplitz matrices , 2004 .
[43] Shivkumar Chandrasekaran,et al. A Superfast Algorithm for Toeplitz Systems of Linear Equations , 2007, SIAM J. Matrix Anal. Appl..
[44] R. Kanwal. Linear Integral Equations , 1925, Nature.