Convergence of discrete time option pricing models under stochastic interest rates

Abstract. We analyze the joint convergence of sequences of discounted stock prices and Radon-Nicodym derivatives of the minimal martingale measure when interest rates are stochastic. Therefrom we deduce the convergence of option values in either complete or incomplete markets. We illustrate the general result by two main examples: a discrete time i.i.d. approximation of a Merton type pricing model for options on stocks and the trinomial tree of Hull and White for interest rate derivatives.

[1]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[2]  Alan G. White,et al.  One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities , 1993, Journal of Financial and Quantitative Analysis.

[3]  Darrell Duffie,et al.  Stochastic Equilibria: Existence, Spanning Number, and the 'No Expected Financial Gain from Trade' Hypothesis , 1986 .

[4]  Martin Schweizer,et al.  Variance-Optimal Hedging in Discrete Time , 1995, Math. Oper. Res..

[5]  Jean-Luc Prigent,et al.  Weak Convergence of Hedging Strategies of Contingent Claims , 2002 .

[6]  Jean-Luc Prigent,et al.  Incomplete markets: convergence of options values under the minimal martingale measure , 1999, Advances in Applied Probability.

[7]  Alan G. White,et al.  Using Hull-White Interest Rate Trees , 1996 .

[8]  J. Mémin,et al.  Convergence en loi des suites d'intégrales stochastiques sur l'espace $$\mathbb{D}$$ 1 de Skorokhod , 1989 .

[9]  Werner Hildenbrand,et al.  Contributions to mathematical economics in honor of Gérard Debreu , 1986 .

[10]  John C. Hull,et al.  Numerical Procedures for Implementing Term Structure Models II , 1994 .

[11]  Alan G. White,et al.  Pricing Interest-Rate-Derivative Securities , 1990 .

[12]  O. Scaillet,et al.  Option Pricing with Discrete Rebalancing , 2002 .

[13]  Convergence of Arbitrage-Free Discrete Time Markovian Market Models , 2000 .

[14]  P. Protter,et al.  Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations , 1991 .

[15]  D. Sondermann Hedging of non-redundant contingent claims , 1985 .

[16]  Wolfgang J. Runggaldier,et al.  Convergence of Option Values under Incompleteness , 1995 .

[17]  Philip Protter,et al.  FROM DISCRETE- TO CONTINUOUS-TIME FINANCE: WEAK CONVERGENCE OF THE FINANCIAL GAIN PROCESS' , 1992 .

[18]  W. Schachermayer,et al.  When Does Convergence of Asset Price Processes Imply Convergence of Option Prices? , 1998 .

[19]  J. Mémin,et al.  Condition UT et stabilité en loi des solutions d’équations différentielles stochastiques , 1991 .

[20]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[21]  M. Schweizer Mean-Variance Hedging for General Claims , 1992 .

[22]  A. Frachot,et al.  Modèles factoriels de la structure par termes des taux d'intérêt: Théorie et application économétrique , 1995 .

[23]  S. Pliska,et al.  Mathematics of Derivative Securities , 1998 .

[24]  M. Schweizer Option hedging for semimartingales , 1991 .

[25]  C. Stricker,et al.  Unicité et existence de la loi minimale , 1993 .

[26]  D. Duffie,et al.  A YIELD-FACTOR MODEL OF INTEREST RATES , 1996 .

[27]  C. Stricker Lois de semimartingales et critères de compacité , 1985 .