Linear reconstruction of compensated images: theory and experimental results.

Linear image reconstruction techniques are proposed for postprocessing astronomical images measured with compensated imaging systems. Linear techniques use averaging to overcome the effects of noise and deconvolution to remove system effects. Experimental results from compensated image measurements of four single stars and one binary star at visible wavelengths are reported for the first time, to our knowledge, and a previously derived analytic expression relating the statistics of the compensated optical transfer function to the compensated image spectrum signal-to-noise ratio is verified. The performance of deconvolution on a bright binary star with angular subtense previously estimated to be 0.52 arcsec (2.52 microrad) is demonstrated.