Spherical sampling methods for the calculation of metamer mismatch volumes

In this paper, we propose two methods of calculating theoretically maximal metamer mismatch volumes. Unlike prior art techniques, our methods do not make any assumptions on the shape of spectra on the boundary of the mismatch volumes. Both methods utilize a spherical sampling approach, but they calculate mismatch volumes in two different ways. The first method uses a linear programming optimization, while the second is a computational geometry approach based on half-space intersection. We show that under certain conditions the theoretically maximal metamer mismatch volume is significantly larger than the one approximated using a prior art method.

[1]  G. Finlayson,et al.  Metamer mismatch volumes using spherical sampling , 2017, Color and Imaging Conference.

[2]  Graham D. Finlayson,et al.  Computing the object colour solid using spherical sampling , 2016 .

[3]  Graham D. Finlayson,et al.  Making the calculation of Logvinenko's coordinates easy , 2012, Color Imaging Conference.

[4]  Brian V. Funt,et al.  XYZ to ADL: Calculating Logvinenko's Object Color Coordinates , 2010, Color Imaging Conference.

[5]  A. Logvinenko An object-color space. , 2009, Journal of vision.

[6]  Philipp Urban,et al.  Color Correction by Calculating a Metamer Boundary Descriptor , 2004, CGIV.

[7]  Graham D. Finlayson,et al.  Metamer Constrained Colour Correction , 1999, Color Imaging Conference.

[8]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[9]  Michael H. Brill,et al.  Conditions under which Schrödinger object colors are optimal , 1983 .

[10]  J. J. Vos Colorimetric and photometric properties of a 2° fundamental observer , 1978 .

[11]  Noboru Ohta,et al.  Theoretical chromaticity-mismatch limits of metamers viewed under different illuminants , 1975 .

[12]  G. Marsaglia Choosing a Point from the Surface of a Sphere , 1972 .

[13]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[14]  E. Allen Basic Equations Used in Computer Color Matching , 1966 .

[15]  Alexander D. Logvinenko,et al.  Metamer Mismatching , 2014, IEEE Transactions on Image Processing.

[16]  Peter J. Disimile,et al.  Vortex entrainment and separation using flow superposition , 2006, J. Vis..

[17]  Peter Michael Morovic,et al.  Metamer sets , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Erwin Schrödinger,et al.  Theorie der Pigmente von größter Leuchtkraft , 1920 .