Modeling the Steady-State and Dynamic Characteristics of Solid-Oxide Fuel Cells

[1]  W. Bessler,et al.  Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode , 2009 .

[2]  P. Glarborg,et al.  Chemically Reacting Flow : Theory and Practice , 2003 .

[3]  Vinod M. Janardhanan,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[4]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[5]  O. Deutschmann,et al.  Methane reforming kinetics within a Ni–YSZ SOFC anode support , 2005 .

[6]  C. Jin,et al.  Direct operation of cone-shaped anode-supported segmented-in-series solid oxide fuel cell stack with methane , 2010 .

[7]  P. Shearing,et al.  3D reconstruction of SOFC anodes using a focused ion beam lift-out technique , 2009 .

[8]  S. Barnett,et al.  Direct operation of solid oxide fuel cells with methane fuel , 2005 .

[9]  E. Wachsman,et al.  Three-Dimensional Reconstruction of Porous LSCF Cathodes , 2007 .

[10]  W. Bessler,et al.  Elementary Reaction Kinetics of the CO ∕ CO2 ∕ Ni ∕ YSZ Electrode , 2011 .

[11]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[12]  L.G.J. de Haart,et al.  Lightweight Cassette Type SOFC Stacks for Automotive Applications , 2006 .

[13]  V. Antonucci,et al.  Micro-modelling of solid oxide fuel cell electrodes , 1998 .

[14]  Uri M. Ascher,et al.  Ordinary Differential Equations , 1998 .

[15]  Khiam Aik Khor,et al.  Cathode Micromodel of Solid Oxide Fuel Cell , 2004 .

[16]  Raymond J. Gorte,et al.  An Examination of Carbonaceous Deposits in Direct-Utilization SOFC Anodes , 2004 .

[17]  S. Barnett,et al.  Short-period segmented-in-series solid oxide fuel cells on flattened tube supports , 2007 .

[18]  Lin Ma,et al.  Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes , 2010 .

[19]  E. A. Mason,et al.  Gas Transport in Porous Media: The Dusty-Gas Model , 1983 .

[20]  Robert J. Kee,et al.  Solid-oxide fuel cells with hydrocarbon fuels , 2005 .

[21]  K. Sasaki,et al.  Equilibria in Fuel Cell Gases I. Equilibrium Compositions and Reforming Conditions , 2003 .

[22]  R. Kee,et al.  Modeling Electrochemical Impedance Spectra in SOFC Button Cells with Internal Methane Reforming , 2006 .

[23]  W. Bessler,et al.  A new framework for physically based modeling of solid oxide fuel cells , 2007 .

[24]  Connor J. Moyer,et al.  Polarization Characteristics and Chemistry in Reversible Tubular Solid-Oxide Cells Operating on Mixtures of H2, CO, H2O , and CO2 , 2011 .

[25]  T. Kiyabu,et al.  Improvement of Tubular Type Cell Stack , 2007 .

[26]  Anthony M. Dean,et al.  Comparison of conversion and deposit formation of ethanol and butane under SOFC conditions , 2006 .

[27]  Tyrone L. Vincent,et al.  Modeling and control of tubular solid-oxide fuel cell systems. I: Physical models and linear model reduction , 2011 .

[28]  Manoj Pillai,et al.  Solid Oxide Fuel Cell with Oxide Anode-Side Support , 2008 .

[29]  Andrew M. Colclasure,et al.  Modeling Electrochemical Oxidation of Hydrogen on Ni–YSZ Pattern Anodes , 2009 .

[30]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[31]  R. Xie,et al.  Phase Purity and Luminescence Properties of Fine Ca-α-SiAlON : Eu Phosphors Synthesized by Gas Reduction Nitridation Method , 2008 .

[32]  K. Sasaki,et al.  Re-analysis of defect equilibria and transport parameters in Y2O3-stabilized ZrO2 using EPR and optical relaxation , 2000 .

[33]  Ludwig J. Gauckler,et al.  Reaction kinetics of the Pt, O2(g)|c-ZrO2 system : precursor-mediated adsorption , 1999 .

[34]  S. H. Pyke,et al.  The Components of a Rolls-Royce 1 MW SOFC System , 2007 .

[35]  D. Jeon,et al.  A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells , 2006 .

[36]  R. Kee,et al.  Multidimensional flow, thermal, and chemical behavior in solid-oxide fuel cell button cells , 2009 .

[37]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[38]  E. Wachsman,et al.  Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs , 2009 .

[39]  Robert J. Kee,et al.  Gas-phase reactions of methane and natural-gas with air and steam in non-catalytic regions of a solid-oxide fuel cell , 2006 .

[40]  W. Bessler Rapid Impedance Modeling via Potential Step and Current Relaxation Simulations , 2007 .

[41]  W. Bessler,et al.  The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes , 2007 .

[42]  Robert J. Kee,et al.  Importance of Anode Microstructure in Modeling Solid Oxide Fuel Cells , 2008 .

[43]  Marcio Gameiro,et al.  Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode , 2009 .

[44]  Konstantin Mischaikow,et al.  Three-Dimensional Analysis of Solid Oxide Fuel Cell Ni-YSZ Anode Interconnectivity , 2009, Microscopy and Microanalysis.

[45]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[46]  N. Abatzoglou,et al.  Three-phase Boundary Length Evaluation in Modeled Sintered Composite Solid Oxide Fuel Cell Electrodes , 2009 .

[47]  K. J. Kattke,et al.  High-fidelity stack and system modeling for tubular solid oxide fuel cell system design and thermal , 2011 .

[48]  Ludwig J. Gauckler,et al.  Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part I: General framework, modelling, and structural investigation , 1999 .

[49]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[50]  Scott A. Barnett,et al.  Use of a catalyst layer for propane partial oxidation in solid oxide fuel cells , 2005 .

[51]  E. Ivers-Tiffée,et al.  3D Electrode Microstructure Reconstruction and Modelling , 2009 .

[52]  Kevin Kendall,et al.  Micro-tubular solid oxide fuel cells and stacks , 2011 .

[53]  Robert J. Kee,et al.  A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames , 1988 .

[54]  A. Isenberg Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures , 1981 .

[55]  L. Gauckler,et al.  Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part II: Model implementation, parameter estimation, and validation , 1999 .

[56]  Robert J. Kee,et al.  Thermodynamics of SOFC efficiency and fuel utilization as functions of fuel mixtures and operating conditions , 2006 .

[57]  Jon G. Pharoah,et al.  Focused ion beam-scanning electron microscopy on solid-oxide fuel-cell electrode: Image analysis and computing effective transport properties , 2011 .

[58]  W. Chiu,et al.  Nondestructive Imaging and Analysis of Transport Processes in the Solid Oxide Fuel Cell Anode , 2009 .

[59]  Scott A. Barnett,et al.  Effect of composition of (La0.8Sr0.2MnO3–Y2O3-stabilized ZrO2) cathodes: Correlating three-dimensional microstructure and polarization resistance , 2010 .

[60]  Jiang Liu,et al.  Performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack fabricated by dip coating technique , 2009 .

[61]  L. Gauckler,et al.  State-space modeling of the anodic SOFC system Ni, H2–H2O∣YSZ , 2002 .

[62]  John O’M. Bockris,et al.  Electrochemical methods — Fundamentals and applications, Allen J. Bard, Larry R. Faulkner. Wiley, New York (1980), xviii+718 pp., £14.70 , 1981 .

[63]  Hiroshi Iwai,et al.  Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique , 2010 .

[64]  R. Kee,et al.  A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies , 2003 .

[65]  N. Minh Ceramic Fuel Cells , 1993 .

[66]  Robert J. Kee,et al.  Solid Oxide Fuel Cells: Operating Principles, Current Challenges, and the Role of Syngas , 2008 .

[67]  Vinod M. Janardhanan,et al.  Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells , 2005 .

[68]  S. Chan,et al.  Anode Micro Model of Solid Oxide Fuel Cell , 2001 .

[69]  Arnold Otto Isenberg,et al.  High-temperature solid oxide fuel cell — technical status , 1983 .

[70]  P. Deuflhard,et al.  One-step and extrapolation methods for differential-algebraic systems , 1987 .

[71]  R. Kee,et al.  Two-dimensional model of distributed charge transfer and internal reforming within unit cells of segmented-in-series solid-oxide fuel cells , 2011 .

[72]  Robert J. Kee,et al.  Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes , 2009 .

[73]  Robert J. Kee,et al.  A particle-based model for predicting the effective conductivities of composite electrodes , 2010 .

[74]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[75]  Wilson K. S. Chiu,et al.  Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50 nm Resolution , 2008 .