Uncertainty of Line Segments Extracted from Static SICK PLS Laser Scans

Data fusion using Kalman filters requires reasonably good error models. Our intention to fuse line segments, corners and edges obtained from a laser scanner and from advanced sonars provided the motivation on the investigation of Sick PLS laser scanner range measurement reliability, and line segment estimation precision. We present an approach for fitting lines straight in the lasers polar coordinate system, which enables a simple estimation of line parameter covariance. We also develop systematic error models for line parameter estimation. Finally we measure our systematic and random error models experimentally, and show, that systematic errors can be larger than random ones.

[1]  Richard P. Paul,et al.  Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[2]  Günther Schmidt,et al.  Continuous localization of a mobile robot based on 3D-laser-range-data, predicted sensor images, and dead-reckoning , 1995, Robotics Auton. Syst..

[3]  Lindsay Kleeman On-the-fly classifying sonar with accurate range and bearing estimation , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[5]  Alan Jeffrey,et al.  Handbook of mathematical formulas and integrals , 1995 .

[6]  Antonio Reina,et al.  Characterization of a radial laser scanner for mobile robot navigation , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[7]  D. Gimlin Quantization of noisy signals , 1980, IEEE Acoustics, Speech, and Signal Processing Newsletter.

[8]  Stergios I. Roumeliotis,et al.  Weighted range sensor matching algorithms for mobile robot displacement estimation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[9]  Jens-Steffen Gutmann,et al.  Robuste Navigation autonomer mobiler Systeme , 2000, DISKI.

[10]  Stephen Taylor,et al.  Regression Analysis with Applications , 1987 .

[11]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[12]  Rachid Deriche,et al.  From Noisy Edge Points to 3D Reconstruction of a Scene: A Robust Approach and its Uncertainty Analysis , 1992 .

[13]  Cang Ye,et al.  Characterization of a 2D laser scanner for mobile robot obstacle negotiation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[14]  Patric Jensfelt,et al.  Approaches to Mobile Robot Localization in Indoor Environments , 2001 .

[15]  Penny Probert Smith,et al.  Range finding and feature extraction by segmentation of images for mobile robot navigation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[16]  Martial Hebert Active and passive range sensing for robotics , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Ralph. Deutsch,et al.  Estimation Theory , 1966 .

[18]  Roland Siegwart,et al.  Feature extraction and scene interpretation for map-based navigation and map building , 1998, Other Conferences.

[19]  Eric Krotkov,et al.  Laser rangefinder calibration for a walking robot , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.