Algebraic lattice constellations: bounds on performance

In this work, we give a bound on performance of any full-diversity lattice constellation constructed from algebraic number fields. We show that most of the already available constructions are almost optimal in the sense that any further improvement of the minimum product distance would lead to a negligible coding gain. Furthermore, we discuss constructions, minimum product distance, and bounds for full-diversity complex rotated Z[i]/sup n/-lattices for any dimension n, which avoid the need of component interleaving.

[1]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[2]  P. Samuel Théorie algébrique des nombres , 1971 .

[3]  Norman C. Beaulieu,et al.  Systematic construction of full diversity algebraic constellations , 2003, IEEE Trans. Inf. Theory.

[4]  F. Oggier Algebraic methods for channel coding , 2005 .

[5]  E. Bayer-Fluckiger Lattices and number Fields , 1999 .

[6]  Jean-Claude Belfiore,et al.  Algebraic tools to build modulation schemes for fading channels , 1997, IEEE Trans. Inf. Theory.

[7]  Andrew Odlyzko,et al.  Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions : a survey of recent results , 1990 .

[8]  L. Washington Introduction to Cyclotomic Fields , 1982 .

[9]  Josep Rifà,et al.  On Completely Regular Propelinear Codes , 1988, AAECC.

[10]  Frédérique E. Oggier,et al.  New algebraic constructions of rotated cubic lattice constellations for the Rayleigh fading channel , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[11]  Bernhard Ganter,et al.  Algebraic techniques for nonlinear codes , 1983, Comb..

[12]  Kevin T. Phelps,et al.  On binary 1-perfect additive codes: Some structural properties , 2002, IEEE Trans. Inf. Theory.

[13]  H. P. F. Swinnerton-Dyer A brief guide to algebraic number theory , 2001 .

[14]  Tanja Lange,et al.  Complex Multiplication , 2005, Handbook of Elliptic and Hyperelliptic Curve Cryptography.

[15]  Frédérique E. Oggier,et al.  New algebraic constructions of rotated Z/sup n/-lattice constellations for the Rayleigh fading channel , 2004, IEEE Transactions on Information Theory.

[16]  Emanuele Viterbo,et al.  Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Channel , 1998, IEEE Trans. Inf. Theory.

[17]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[18]  Jaume Pujol,et al.  Translation-invariant propelinear codes , 1997, IEEE Trans. Inf. Theory.

[19]  Frédérique E. Oggier,et al.  Algebraic Number Theory and Code Design for Rayleigh Fading Channels , 2004, Found. Trends Commun. Inf. Theory.

[20]  Emanuele Viterbo,et al.  Good lattice constellations for both Rayleigh fading and Gaussian channels , 1996, IEEE Trans. Inf. Theory.

[21]  Henri Cohen,et al.  Advanced topics in computational number theory , 2000 .

[22]  F. Oggier,et al.  Best rotated cubic lattice constellations for the Rayleigh fading channel , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..