A nonlinear mixed-effect mixture model for functional mapping of dynamic traits

Functional mapping has emerged as a next-generation statistical tool for mapping quantitative trait loci (QTL) that affect complex dynamic traits. In this article, we incorporated the idea of nonlinear mixed-effect (NLME) models into the mixture-based framework of functional mapping, aimed to generalize the spectrum of applications for functional mapping. NLME-based functional mapping, implemented with the linearization algorithm based on the first-order Taylor expansion, can provide reasonable estimates of QTL genotypic-specific curve parameters (fixed effect) and the between-individual variation of these parameters (random effect). Results from simulation studies suggest that the NLME-based model is more general than traditional functional mapping. The new model can be useful for the identification of the ontogenetic patterns of QTL genetic effects during time course.

[1]  O. Schabenberger The use of ordinal response methodology in forestry , 1995 .

[2]  R. Sederoff,et al.  Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. , 1994, Genetics.

[3]  L B Sheiner,et al.  Estimating population kinetics. , 1982, Critical reviews in biomedical engineering.

[4]  A. Perelson,et al.  Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection , 1995, Nature.

[5]  A. Worland,et al.  Time-related mapping of quantitative trait loci underlying tiller number in rice. , 1999, Genetics.

[6]  R. Wu,et al.  Theoretical Basis for the Identification of Allelic Variants That Encode Drug Efficacy and Toxicity , 2005, Genetics.

[7]  Nonlinear mixed‐effect models with nonignorably missing covariates , 2004 .

[8]  S. Leal Genetics and Analysis of Quantitative Traits , 2001 .

[9]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[10]  Wei Zhao,et al.  Functional mapping for quantitative trait loci governing growth rates: a parametric model. , 2003, Physiological genomics.

[11]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[12]  G. Casella,et al.  A General Framework for Analyzing the Genetic Architecture of Developmental Characteristics , 2004, Genetics.

[13]  Rongling Wu,et al.  A statistical model for high‐resolution mapping of quantitative trait loci determining HIV dynamics , 2004, Statistics in medicine.

[14]  Zehua Chen The Full EM Algorithm for the MLEs of QTL Effects and Positions and Their Estimated Variances in Multiple‐Interval Mapping , 2005, Biometrics.

[15]  R. Wu,et al.  An algorithm for molecular dissection of tumor progression , 2005, Journal of mathematical biology.

[16]  G. Reinsel,et al.  Models for Longitudinal Data with Random Effects and AR(1) Errors , 1989 .

[17]  L. Bertalanffy Quantitative Laws in Metabolism and Growth , 1957 .

[18]  G. Casella,et al.  Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. , 2002, Genetics.

[19]  Shizhong Xu,et al.  Bayesian Shrinkage Analysis of Quantitative Trait Loci for Dynamic Traits , 2007, Genetics.

[20]  Wei Zhao,et al.  A non-stationary model for functional mapping of complex traits , 2005, Bioinform..

[21]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[22]  G. Casella,et al.  Molecular Dissection of Allometry, Ontogeny, and Plasticity: A Genomic View of Developmental Biology , 2003 .

[23]  G. Casella,et al.  Functional Mapping of Quantitative Trait Loci Underlying Growth Trajectories Using a Transform‐Both‐Sides Logistic Model , 2004, Biometrics.

[24]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[25]  H. Lewin,et al.  Detection of quantitative trait loci influencing dairy traits using a model for longitudinal data. , 2002, Journal of dairy science.

[26]  Lang Wu,et al.  A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies , 2002 .

[27]  R. Wu,et al.  A statistical model to analyse quantitative trait locus interactions for HIV dynamics from the virus and human genomes , 2006, Statistics in medicine.

[28]  Rongling Wu,et al.  Molecular linkage maps of the Populus genome. , 2002, Genome.

[29]  Russell D. Wolfinger,et al.  Laplace's approximation for nonlinear mixed models. , 1993 .

[30]  Dibyen Majumdar,et al.  Conditional Second-Order Generalized Estimating Equations for Generalized Linear and Nonlinear Mixed-Effects Models , 2002 .

[31]  Shizhong Xu Estimating polygenic effects using markers of the entire genome. , 2003, Genetics.

[32]  Lang Wu Exact and Approximate Inferences for Nonlinear Mixed-Effects Models With Missing Covariates , 2004 .

[33]  R. Wu,et al.  Functional mapping — how to map and study the genetic architecture of dynamic complex traits , 2006, Nature Reviews Genetics.

[34]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[35]  Shizhong Xu,et al.  Mapping Quantitative Trait Loci for Longitudinal Traits in Line Crosses , 2006, Genetics.

[36]  Marie Davidian,et al.  Nonlinear models for repeated measurement data: An overview and update , 2003 .

[37]  Derivation of the Shrinkage Estimates of Quantitative Trait Locus Effects , 2007, Genetics.

[38]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[39]  J. Cheverud,et al.  A Mechanistic Model for Genetic Machinery of Ontogenetic Growth , 2004, Genetics.

[40]  Shizhong Xu,et al.  Bayesian Shrinkage Estimation of Quantitative Trait Loci Parameters , 2005, Genetics.

[41]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[42]  James H. Brown,et al.  A general model for ontogenetic growth , 2001, Nature.

[43]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[44]  Marie Davidian,et al.  Nonlinear Models for Repeated Measurement Data , 1995 .

[45]  R. Visser,et al.  QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato , 2006, Theoretical and Applied Genetics.