One and Two Bit Message Passing for SC-LDPC Codes With Higher-Order Modulation

Low complexity decoding algorithms are necessary to meet data rate requirements in excess of 1 Tbps. In this paper, we study one and two bit message passing algorithms for belief propagation decoding of low-density parity-check (LDPC) codes and analyze them by density evolution. The variable nodes (VNs) exploit soft information from the channel output. To decrease the data flow, the messages exchanged between check nodes (CNs) and VNs are represented by one or two bits. The newly proposed quaternary message passing (QMP) algorithm is compared asymptotically and in finite length simulations to binary message passing (BMP) and ternary message passing (TMP) for spectrally efficient communication with higher-order modulation and probabilistic amplitude shaping (PAS). To showcase the potential for high throughput forward error correction, spatially coupled LDPC codes and a target spectral efficiency (SE) of 3 bits/QAM symbol are considered. Gains of about 0.7 dB and 0.1 dB are observed compared to BMP and TMP, respectively. The gap to unquantized belief propagation (BP) decoding is reduced to about 0.75 dB. For smaller code rates, the gain of QMP compared to TMP is more pronounced and amounts to 0.24 dB in the considered example.

[1]  Laurent Schmalen,et al.  Status and Recent Advances on Forward Error Correction Technologies for Lightwave Systems , 2014, Journal of Lightwave Technology.

[2]  Patrick Schulte,et al.  Probabilistic Shaping and Forward Error Correction for Fiber-Optic Communication Systems , 2019, Journal of Lightwave Technology.

[3]  Gianluigi Liva,et al.  Binary Message Passing Decoding of Product-Like Codes , 2019, IEEE Transactions on Communications.

[4]  Alexandre Graell i Amat,et al.  Iterative Bounded Distance Decoding of Product Codes with Scaled Reliability , 2018, 2018 European Conference on Optical Communication (ECOC).

[5]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[6]  Troels Pedersen,et al.  Analysis and Design of Binary Message Passing Decoders , 2012, IEEE Transactions on Communications.

[7]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[8]  Georg Böcherer Achievable Rates for Probabilistic Shaping , 2017, ArXiv.

[9]  Alexandre Graell i Amat,et al.  Binary Message Passing Decoding of Product Codes Based on Generalized Minimum Distance Decoding : (Invited Paper) , 2019, 2019 53rd Annual Conference on Information Sciences and Systems (CISS).

[10]  G. Forney,et al.  Trellis shaping , 1992, IEEE/CAM Information Theory Workshop at Cornell.

[11]  Rana Ali Amjad Information Rates and Error Exponents for Probabilistic Amplitude Shaping , 2018, 2018 IEEE Information Theory Workshop (ITW).

[12]  G. David Forney,et al.  Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..

[13]  D. Costello,et al.  Approaching capacity with asymptotically regular LDPC codes , 2009, 2009 Information Theory and Applications Workshop.

[14]  Dariush Divsalar,et al.  Capacity-approaching protograph codes , 2009, IEEE Journal on Selected Areas in Communications.

[15]  Patrick Schulte,et al.  Bandwidth Efficient and Rate-Compatible Low-Density Parity-Check Coded Modulation , 2015, ArXiv.

[16]  Surrogate-channel design of universal LDPC codes , 2006, IEEE Communications Letters.

[17]  P. Poggiolini,et al.  The GN-Model of Fiber Non-Linear Propagation and its Applications , 2014, Journal of Lightwave Technology.

[18]  Norbert Wehn,et al.  A new dimension of parallelism in ultra high throughput LDPC decoding , 2013, SiPS 2013 Proceedings.

[19]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[20]  R. Gallager Information Theory and Reliable Communication , 1968 .

[21]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[22]  Fabian Steiner,et al.  Protograph-Based LDPC Code Design for Ternary Message Passing Decoding , 2018, ArXiv.

[23]  Masud Mansuripur,et al.  Enumerative modulation coding with arbitrary constraints and postmodulation error correction coding for data storage systems , 1991, Other Conferences.

[24]  Alex Alvarado,et al.  A novel soft-aided bit-marking decoder for product codes , 2019, ArXiv.

[25]  Michael Lentmaier,et al.  Braided Block Codes , 2009, IEEE Transactions on Information Theory.

[26]  Peter J. Winzer,et al.  Probabilistic Constellation Shaping for Optical Fiber Communications , 2019, Journal of Lightwave Technology.

[27]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[28]  Paul H. Siegel,et al.  Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.

[29]  Alexandre Graell i Amat,et al.  Energy-Efficient Soft-Assisted Product Decoders , 2019, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[30]  Oida OFC 2018 Post-Show Report , 2018 .

[31]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[32]  Frank R. Kschischang,et al.  Low-Complexity Concatenated LDPC-Staircase Codes , 2018, Journal of Lightwave Technology.

[33]  Maurizio Magarini,et al.  Concatenated Coded Modulation for Optical Communications Systems , 2010, IEEE Photonics Technology Letters.

[34]  Patrick Schulte,et al.  Experimental demonstration of capacity increase and rate-adaptation by probabilistically shaped 64-QAM , 2015, 2015 European Conference on Optical Communication (ECOC).

[35]  Paul H. Siegel,et al.  Windowed Decoding of Protograph-Based LDPC Convolutional Codes Over Erasure Channels , 2010, IEEE Transactions on Information Theory.

[36]  Patrick Schulte,et al.  Constant Composition Distribution Matching , 2015, IEEE Transactions on Information Theory.

[37]  Frank R. Kschischang,et al.  Optimal nonuniform signaling for Gaussian channels , 1993, IEEE Trans. Inf. Theory.

[38]  Rudiger Urbanke,et al.  Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC , 2010, ISIT.

[39]  Alexandre Graell i Amat,et al.  Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes , 2017, Journal of Lightwave Technology.

[40]  Bin Chen,et al.  Improved Decoding of Staircase Codes: The Soft-Aided Bit-Marking (SABM) Algorithm , 2019, IEEE Transactions on Communications.

[41]  Frank R. Kschischang,et al.  Low-Complexity Soft-Decision Concatenated LDGM-Staircase FEC for High-Bit-Rate Fiber-Optic Communication , 2017, Journal of Lightwave Technology.

[42]  Frank R. Kschischang,et al.  Staircase Codes: FEC for 100 Gb/s OTN , 2012, Journal of Lightwave Technology.

[43]  Igal Sason,et al.  On Universal Properties of Capacity-Approaching LDPC Code Ensembles , 2007, IEEE Transactions on Information Theory.

[44]  Paul H. Siegel,et al.  Windowed Decoding of Spatially Coupled Codes , 2011, IEEE Transactions on Information Theory.

[45]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[46]  Gianluigi Ferrari,et al.  Does the Performance of LDPC Codes Depend on the Channel? , 2006, IEEE Transactions on Communications.

[47]  Laurent Schmalen,et al.  Spatially Coupled Soft-Decision Error Correction for Future Lightwave Systems , 2015, Journal of Lightwave Technology.