Spontaneous organization of uniform CeO2 nanoflowers by 3D oriented attachment in hot surfactant solutions monitored with an in situ electrical conductance technique.

Uniform CeO(2) nanoflowers were synthesized by rapid thermolysis of (NH(4))(2)Ce(NO(3))(6) in oleic acid (OA)/oleylamine (OM), by a unique 3D oriented-attachment mechanism. CeO(2) nanoflowers with controlled shape (cubic, four-petaled, and starlike) and tunable size (10-40 nm) were obtained by adjusting the reaction conditions including solvent composition, precursor concentration, reaction temperature, and reaction time. The nanoflower growth mechanism was investigated by in situ electrical conductance measurements, transmission electron microscopy, and UV/Vis spectroscopy. The CeO(2) nanoflowers are likely formed in two major steps, that is, initial formation of ceria cluster particles capped with various ligands (e.g., OA, OM, and NO(3) (-)) via hydrolysis of (NH(4))(2)Ce(NO(3))(6) at temperatures in the range 140-220 degrees C, and subsequent spontaneous organization of the primary particles into nanoflowers by 3D oriented attachment, due to a rapid decrease in surface ligand coverage caused by sudden decomposition of the precursor at temperatures above 220 degrees C in a strong redox reaction. After calcination at 400 degrees C for 4 h the 33.8 nm CeO(2) nanoflowers have a specific surface area as large as 156 m(2) g(-1) with high porosity, and they are highly active for conversion of CO to CO(2) in the low temperature range of 200-400 degrees C. The present approach has also been extended to the preparation of other transition metal oxide (CoO, NiO, and CuO(x)) nanoflowers.

[1]  B. Korgel,et al.  Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. , 2003, Journal of the American Chemical Society.

[2]  A. Alivisatos,et al.  The concept of delayed nucleation in nanocrystal growth demonstrated for the case of iron oxide nanodisks. , 2006, Journal of the American Chemical Society.

[3]  Steven L. Suib,et al.  Manganese Oxide Thin Films with Fast Ion-Exchange Properties , 2000 .

[4]  Toshio Suzuki,et al.  RAMAN SCATTERING AND LATTICE DEFECTS IN NANOCRYSTALLINE CEO2 THIN FILMS , 2002 .

[5]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[6]  Banfield,et al.  Imperfect oriented attachment: dislocation generation in defect-free nanocrystals , 1998, Science.

[7]  A. Kasuya,et al.  Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles , 2000 .

[8]  G. Watson,et al.  Atomistic models for CeO(2)(111), (110), and (100) nanoparticles, supported on yttrium-stabilized zirconia. , 2002, Journal of the American Chemical Society.

[9]  B. Gorman,et al.  Optical properties of CeO2 films prepared from colloidal suspension , 2001 .

[10]  I. Morozov,et al.  Synthesis and crystal structure of alkali metal and ammonium nitratocuprates(II): M3[Cu(NO3)4](NO3) (M = K, NH4, Rb) and Cs2[Cu(NO3)4] , 1998 .

[11]  S. Hong,et al.  Ferromagnetic cobalt nanodots, nanorices, nanowires and nanoflowers by polyol process , 2005 .

[12]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[13]  Chunhua Yan,et al.  From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase. , 2007, Chemistry.

[14]  R. Weissleder Molecular imaging: exploring the next frontier. , 1999, Radiology.

[15]  N. El-Masry,et al.  Violet/blue emission from epitaxial cerium oxide films on silicon substrates , 1997 .

[16]  N. Pradhan,et al.  Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. , 2006, Journal of the American Chemical Society.

[17]  Jin-Sil Choi,et al.  Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters. , 2005, The journal of physical chemistry. B.

[18]  Giovanni Neri,et al.  Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing. , 2004, Angewandte Chemie.

[19]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[20]  Salah M. Bedair,et al.  ELECTRICAL CHARACTERISTICS OF EPITAXIAL CEO2 ON SI(111) , 1994 .

[21]  S. C. Parker,et al.  The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide , 1994 .

[22]  A. Alivisatos,et al.  Synthesis of hcp-Co Nanodisks. , 2002, Journal of the American Chemical Society.

[23]  Ya-Wen Zhang,et al.  Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. , 2005, The journal of physical chemistry. B.

[24]  Wachter,et al.  Covalent insulator CeO2: Optical reflectivity measurements. , 1987, Physical review. B, Condensed matter.

[25]  Stergios Logothetidis,et al.  Structure-dependent electronic properties of nanocrystalline cerium oxide films , 2003 .

[26]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[27]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[28]  A. Frommer,et al.  Three-Dimensional PtRu Nanostructures , 2007 .

[29]  V. Nair,et al.  Cerium(IV) ammonium nitrate--a versatile single-electron oxidant. , 2007, Chemical reviews.

[30]  Weber,et al.  Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. , 1993, Physical review. B, Condensed matter.

[31]  Mauro Graziani,et al.  Use of CeO2-based oxides in the three-way catalysis , 1999 .

[32]  N. Pradhan,et al.  Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection. , 2006, Angewandte Chemie.

[33]  F. Normand,et al.  Oxidation state of cerium in cerium-based catalysts investigated by spectroscopic probes , 1988 .

[34]  Ya‐Wen Zhang,et al.  Controlled-Synthesis, Self-Assembly Behavior, and Surface-Dependent Optical Properties of High-Quality Rare-Earth Oxide Nanocrystals , 2007 .

[35]  S. A. Barnett,et al.  A direct-methane fuel cell with a ceria-based anode , 1999, Nature.

[36]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[37]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[38]  M. Fernández-García,et al.  Confinement effects in quasi-stoichiometric CeO2 nanoparticles , 2004 .

[39]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[40]  L. Qian,et al.  Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers. , 2006, The journal of physical chemistry. B.

[41]  Young-wook Jun,et al.  Formkontrolle von Halbleiter- und Metalloxid-Nanokristallen durch nichthydrolytische Kolloidverfahren , 2006 .

[42]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[43]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[44]  S. Dong,et al.  Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy. , 2006, The journal of physical chemistry. B.

[45]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[46]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[47]  Jin-Sil Choi,et al.  Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. , 2006, Angewandte Chemie.

[48]  Chun-Hua Yan,et al.  FACILE ALCOHOL THERMAL SYNTHESIS, SIZE-DEPENDENT ULTRAVIOLET ABSORPTION AND ENHANCED CO CONVERSION ACTIVITY OF CERIA NANOCRYSTALS , 2003 .

[49]  Avelino Corma,et al.  Hierarchically mesostructured doped CeO2 with potential for solar-cell use , 2004, Nature materials.

[50]  H. Anderson,et al.  Raman Spectroscopy of Nanocrystalline Ceria and Zirconia Thin Films , 2004 .

[51]  B. Jena,et al.  Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[52]  Peidong Yang,et al.  Transition-metal doped zinc oxide nanowires. , 2006, Angewandte Chemie.

[53]  J. Conesa Computer modeling of surfaces and defects on cerium dioxide , 1995 .

[54]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[55]  Qing Peng,et al.  Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes , 2005 .

[56]  I. Willner,et al.  Magnetically amplified DNA assays (MADA): sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles. , 2003, Angewandte Chemie.

[57]  Taeghwan Hyeon,et al.  Chemical synthesis of magnetic nanoparticles. , 2003, Chemical communications.

[58]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .