A Model-Based fMRI Analysis with Hierarchical Bayesian Parameter Estimation.

A recent trend in decision neuroscience is the use of model-based fMRI using mathematical models of cognitive processes. However, most previous model-based fMRI studies have ignored individual differences due to the challenge of obtaining reliable parameter estimates for individual participants. Meanwhile, previous cognitive science studies have demonstrated that hierarchical Bayesian analysis is useful for obtaining reliable parameter estimates in cognitive models while allowing for individual differences. Here we demonstrate the application of hierarchical Bayesian parameter estimation to model-based fMRI using the example of decision making in the Iowa Gambling Task. First we use a simulation study to demonstrate that hierarchical Bayesian analysis outperforms conventional (individual- or group-level) maximum likelihood estimation in recovering true parameters. Then we perform model-based fMRI analyses on experimental data to examine how the fMRI results depend upon the estimation method.

[1]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[2]  Karl J. Friston,et al.  Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning , 2004, Science.

[3]  Saori C. Tanaka,et al.  Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops , 2004, Nature Neuroscience.

[4]  Jerome R. Busemeyer,et al.  Evaluating generalizability and parameter consistency in learning models , 2008, Games Econ. Behav..

[5]  Steven W Anderson,et al.  Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers , 2001, Neuropsychologia.

[6]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[7]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[8]  Eldad Yechiam,et al.  Evaluating the reliance on past choices in adaptive learning models , 2007 .

[9]  J. Kruschke Doing Bayesian Data Analysis: A Tutorial with R and BUGS , 2010 .

[10]  Matthew T. Kaufman,et al.  Distributed Neural Representation of Expected Value , 2005, The Journal of Neuroscience.

[11]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  J. O'Doherty,et al.  Model‐Based fMRI and Its Application to Reward Learning and Decision Making , 2007, Annals of the New York Academy of Sciences.

[13]  Mary Kathryn Cowles Review of WinBUGS 1.4 , 2004 .

[14]  Adam Krawitz,et al.  Anterior insula activity predicts the influence of positively framed messages on decision making , 2010, Cognitive, affective & behavioral neuroscience.

[15]  Samuel M. McClure,et al.  Temporal Prediction Errors in a Passive Learning Task Activate Human Striatum , 2003, Neuron.

[16]  O. Arthurs,et al.  What aspect of the fMRI BOLD signal best reflects the underlying electrophysiology in human somatosensory cortex? , 2003, Clinical Neurophysiology.

[17]  J Pascau,et al.  [Statistical parametric mapping (SPM) in nuclear medicine]. , 2003, Revista espanola de medicina nuclear.

[18]  Jerome R. Busemeyer,et al.  Comparison of Decision Learning Models Using the Generalization Criterion Method , 2008, Cogn. Sci..

[19]  P. Dayan,et al.  Cortical substrates for exploratory decisions in humans , 2006, Nature.

[20]  M. Corbetta,et al.  Separating Processes within a Trial in Event-Related Functional MRI I. The Method , 2001, NeuroImage.

[21]  Michael D. Lee,et al.  A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods , 2008, Cogn. Sci..

[22]  M. Corbetta,et al.  Separating Processes within a Trial in Event-Related Functional MRI II. Analysis , 2001, NeuroImage.

[23]  A. Damasio,et al.  Insensitivity to future consequences following damage to human prefrontal cortex , 1994, Cognition.

[24]  J. Busemeyer,et al.  A contribution of cognitive decision models to clinical assessment: decomposing performance on the Bechara gambling task. , 2002, Psychological assessment.

[25]  E. Wagenmakers,et al.  Bayesian parameter estimation in the Expectancy Valence model of the Iowa gambling task , 2010 .

[26]  A. Roth,et al.  Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria , 1998 .

[27]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[28]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[29]  S. Debener,et al.  Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect Dynamic Changes in the Degree of Surprise , 2008, The Journal of Neuroscience.

[30]  Eldad Yechiam,et al.  Comparison of basic assumptions embedded in learning models for experience-based decision making , 2005, Psychonomic bulletin & review.

[31]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[32]  Karl J. Friston,et al.  Temporal Difference Models and Reward-Related Learning in the Human Brain , 2003, Neuron.

[33]  Tapabrata Maiti,et al.  Bayesian Data Analysis (2nd ed.) (Book) , 2004 .

[34]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[35]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[36]  A. Damasio,et al.  Deciding Advantageously Before Knowing the Advantageous Strategy , 1997, Science.