A review of electrolytes for lithium–sulphur batteries

To optimize the electrolyte is one of the most important directions to take in order to improve the Li/S battery in terms of performance - especially cell cyclability, rate capability, safety, and life-span. In this review we examine the state of the art for different choices of electrolytes; concepts, design, and materials, and how the resulting chemical and physical properties of the electrolyte affect the overall Li/S battery performance. The objective is to create an overall assessment of electrolytes in use at present and to provide a thorough basis for rational selection of future electrolytes for Li/S batteries.

[1]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[2]  C. Angell,et al.  Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity , 1993, Nature.

[3]  Kang Xu,et al.  Sulfone-based electrolytes for lithium-ion batteries , 2002 .

[4]  Zhonghua Gu,et al.  Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries , 2005 .

[5]  K. Zaghib,et al.  LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)-for Li-ion batteries , 2008 .

[6]  Robert Dominko,et al.  Li-S battery analyzed by UV/Vis in operando mode. , 2013, ChemSusChem.

[7]  Fuminori Mizuno,et al.  Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S–P2S5 glass-ceramic electrolytes , 2004 .

[8]  K. W. Kim,et al.  Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions , 2007 .

[9]  Linda F. Nazar,et al.  Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery , 2012 .

[10]  Zaiping Guo,et al.  Investigation of discharge reaction mechanism of lithium|liquid electrolyte|sulfur battery , 2009 .

[11]  Bruno Scrosati,et al.  Recent progress and remaining challenges in sulfur-based lithium secondary batteries--a review. , 2013, Chemical communications.

[12]  Hun‐Gi Jung,et al.  An Advanced Lithium‐Sulfur Battery , 2013 .

[13]  Lin Gu,et al.  Smaller sulfur molecules promise better lithium-sulfur batteries. , 2012, Journal of the American Chemical Society.

[14]  K. Amine,et al.  Sulfone-based electrolytes for high-voltage Li-ion batteries ☆ , 2009 .

[15]  Chunsheng Wang,et al.  Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. , 2011, Nano letters.

[16]  Su-Moon Park,et al.  In Situ Spectroelectrochemical Studies on the Reduction of Sulfur in Dimethyl Sulfoxide Solutions , 1993 .

[17]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[18]  M. Watanabe,et al.  Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. , 2011, Chemical communications.

[19]  H. Byon,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-based organic electrolyte for high performance lithium–sulfur batteries , 2013 .

[20]  W. Henderson,et al.  Glyme-lithium salt phase behavior. , 2006, The journal of physical chemistry. B.

[21]  Jean-Marie Tarascon,et al.  Li–S batteries: simple approaches for superior performance , 2013 .

[22]  S. Salley,et al.  Graphene nanosheet supported bifunctional catalyst for high cycle life Li-air batteries , 2013 .

[23]  B. Scrosati,et al.  Advanced, high-performance composite polymer electrolytes for lithium batteries , 2006 .

[24]  Erik J. Blomberg Redox behavior of Li-S cell with PP14-TFSI ionic liquid electrolyte Spectroscopic study on speciation of polysulfides during charge/discharge processes , 2012 .

[25]  Z. Qian,et al.  The preparation of nano-sulfur/MWCNTs and its electrochemical performance , 2010 .

[26]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[27]  M. Ue,et al.  Electrochemical Properties of Quaternary Ammonium Salts for Electrochemical Capacitors , 1997 .

[28]  Kai Xi,et al.  Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. , 2013, Chemical communications.

[29]  K. W. Kim,et al.  Preparation and characterization of plasticized polymer electrolytes based on the PVdF-HFP copolymer for lithium/sulfur battery , 2002 .

[30]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[31]  Jun Jin,et al.  Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable , 2011 .

[32]  Elton J. Cairns,et al.  N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI–poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte , 2008 .

[33]  Doron Aurbach,et al.  Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy , 2010 .

[34]  W. Wieczorek,et al.  Effective medium theory in studies of conductivity of composite polymeric electrolytes , 1995 .

[35]  W. Cho,et al.  Polysulfide dissolution control: the common ion effect. , 2013, Chemical communications.

[36]  G. Veith,et al.  Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium-sulfur batteries. , 2012, Chemical communications.

[37]  M. Hojo,et al.  Electrochemical Reduction of Elemental Sulfur in Acetonitrile , 1980 .

[38]  Elton J. Cairns,et al.  Characterization of N-Methyl-N-Butylpyrrolidinium Bis(trifluoromethanesulfonyl)imide-LiTFSI-Tetra(ethylene glycol) Dimethyl Ether Mixtures as a Li Metal Cell Electrolyte , 2008 .

[39]  Masahiro Tatsumisago,et al.  Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte , 2011 .

[40]  Jun Chen,et al.  Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries , 2008 .

[41]  Z. Wen,et al.  Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery , 2012 .

[42]  E. Levillain,et al.  Visible time-resolved spectroelectrochemistry: application to study of the reduction of sulfur (S8) in dimethylformamide , 1995 .

[43]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[44]  C. Angell,et al.  Lithium Salt Solutions in Mixed Sulfone and Sulfone-Carbonate Solvents: A Walden Plot Analysis of the Maximally Conductive Compositions , 2012 .

[45]  Min-Kyu Song,et al.  Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. , 2013, Nanoscale.

[46]  D. Collins,et al.  Power Sources 3 , 1971 .

[47]  Bruno Scrosati,et al.  Progress in lithium polymer battery R&D , 2001 .

[48]  Kaoru Dokko,et al.  Ionic Liquid Electrolytes for Lithium–Sulfur Batteries , 2013 .

[49]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[50]  Jens Tübke,et al.  Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes , 2013 .

[51]  Yuriy V. Mikhaylik,et al.  Low Temperature Performance of Li/S Batteries , 2003 .

[52]  R. D. Rauh,et al.  Formation of lithium polysulfides in aprotic media , 1977 .

[53]  X. Tao,et al.  Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries , 2013 .

[54]  Jou-Hyeon Ahn,et al.  Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell , 2008 .

[55]  Jason Xu,et al.  High Energy Rechargeable Li-S Cells for EV Application: Status, Remaining Problems and Solutions , 2010 .

[56]  B. Scrosati,et al.  Superacid ZrO2-added, composite polymer electrolytes with improved transport properties , 2006 .

[57]  Hee‐Tak Kim,et al.  Rechargeable Lithium Sulfur Battery I. Structural Change of Sulfur Cathode During Discharge and Charge , 2003 .

[58]  F. Gaillard,et al.  On the understanding of the reduction of sulfur (S8) in dimethylformamide (DMF) , 1997 .

[59]  Minoru Matsuda,et al.  Study on the reduction species of sulfur by alkali metals in nonaqueous solvents , 1997 .

[60]  Shuru Chen,et al.  Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery , 2011 .

[61]  Brett L. Lucht,et al.  Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries , 2005 .

[62]  Y. Marcus,et al.  The properties of organic liquids that are relevant to their use as solvating solvents , 1994 .

[63]  Li-Jun Wan,et al.  High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte , 2013 .

[64]  X. Tao,et al.  Decoration of sulfur with porous metal nanostructures: an alternative strategy for improving the cyclability of sulfur cathode materials for advanced lithium-sulfur batteries. , 2013, Chemical communications.

[65]  Shengdi Zhang Role of LiNO3 in rechargeable lithium/sulfur battery , 2012 .

[66]  C. Angell,et al.  High Anodic Stability of a New Electrolyte Solvent: Unsymmetric Noncyclic Aliphatic Sulfone , 1998 .

[67]  Kaoru Dokko,et al.  Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable Lithium–Sulfur Batteries , 2013 .

[68]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[69]  K. Striebel,et al.  Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes , 2000 .

[70]  Shin-Jung Choi,et al.  Time-Resolved In Situ Spectroelectrochemical Study on Reduction of Sulfur in N , N ′ -Dimethylformamide , 2004 .

[71]  Doron Aurbach,et al.  Sulfur‐Impregnated Activated Carbon Fiber Cloth as a Binder‐Free Cathode for Rechargeable Li‐S Batteries , 2011, Advanced materials.

[72]  J. Eckert,et al.  Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries. , 2013, Physical chemistry chemical physics : PCCP.

[73]  Hee‐Tak Kim,et al.  Rechargeable Lithium Sulfur Battery II. Rate Capability and Cycle Characteristics , 2003 .

[74]  Kwang Man Kim,et al.  Preparation and electrochemical properties of lithium–sulfur polymer batteries , 2002 .

[75]  Soo-Jin Park,et al.  Effect of imidazolium cation on cycle life characteristics of secondary lithium–sulfur cells using liquid electrolytes , 2007 .

[76]  Bruno Scrosati,et al.  Moving to a Solid‐State Configuration: A Valid Approach to Making Lithium‐Sulfur Batteries Viable for Practical Applications , 2010, Advanced materials.

[77]  J. Tübke,et al.  In-Situ Raman Investigation of Polysulfide Formation in Li-S Cells , 2013 .

[78]  Yunhong Zhou,et al.  Electrochemical properties of the soluble reduction products in rechargeable Li/S battery , 2010 .

[79]  D. Brouillette,et al.  Apparent Molar Volume, Heat Capacity, and Conductance of Lithium Bis(trifluoromethylsulfone)imide in Glymes and Other Aprotic Solvents , 1998 .

[80]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[81]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[82]  D. Wilkinson,et al.  Conductivity of electrolytes for rechargeable lithium batteries , 1991 .

[83]  Jean Dijon,et al.  Novel positive electrode architecture for rechargeable lithium/sulfur batteries , 2012 .

[84]  Per Jacobsson,et al.  Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy , 2013 .

[85]  Hee‐Tak Kim,et al.  Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery , 2002 .

[86]  K. Abraham,et al.  Highly Conductive PEO-like Polymer Electrolytes , 1997 .

[87]  Weikun Wang,et al.  A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries , 2013 .

[88]  M. Armand,et al.  Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytes , 2010 .

[89]  Emanuel Peled,et al.  Lithium Sulfur Battery Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions , 1988 .

[90]  Xiao Xing Liang,et al.  Improved cycling performances of lithium sulfur batteries with LiNO 3-modified electrolyte , 2011 .

[91]  E. Peled,et al.  Lithium‐Sulfur Battery: Evaluation of Dioxolane‐Based Electrolytes , 1989 .

[92]  J. Tarascon,et al.  Analytical detection of soluble polysulphides in a modified Swagelok cell , 2011 .

[93]  A. Hayashi,et al.  High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries , 2012 .

[94]  M. Watanabe,et al.  Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries , 2013 .

[95]  Jou-Hyeon Ahn,et al.  Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes , 2007 .

[96]  Hiroshi Senoh,et al.  All-Solid-State Lithium Secondary Battery with Li2S – C Composite Positive Electrode Prepared by Spark-Plasma-Sintering Process , 2010 .

[97]  A. Hayashi,et al.  Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery , 2012 .

[98]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[99]  R. Bonnaterre,et al.  Spectrophotometric study of the electrochemical reduction of sulphur in organic media , 1972 .

[100]  Viktor Gutmann,et al.  Solvent effects on the reactivities of organometallic compounds , 1976 .

[101]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[102]  Y. Alias,et al.  Electrochemistry of sulfur and polysulfides in ionic liquids. , 2011, The journal of physical chemistry. B.

[103]  R. Steudel Inorganic Polysulfides S n 2− and Radical Anions S n ·− , 2003 .

[104]  K. W. Kim,et al.  Evaluation of sulfur and multi-walled carbon nanotube composite synthesized by dissolution and precipitation for Li/S batteries. , 2012, Journal of nanoscience and nanotechnology.

[105]  Jeong Jae Wie,et al.  The use of elemental sulfur as an alternative feedstock for polymeric materials. , 2013, Nature chemistry.

[106]  Xie Kai,et al.  Effect of LiBOB as additive on electrochemical properties of lithium–sulfur batteries , 2012, Ionics.

[107]  Shengbo Zhang,et al.  A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density , 2012 .

[108]  Bruno Scrosati,et al.  A high-performance polymer tin sulfur lithium ion battery. , 2010, Angewandte Chemie.

[109]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[110]  Michel Armand,et al.  The history of polymer electrolytes , 1994 .

[111]  Jie Gao,et al.  Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies , 2011 .

[112]  Yang‐Kook Sun,et al.  Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. , 2013, ChemSusChem.

[113]  Pu Chen,et al.  Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries , 2012 .

[114]  Shiro Seki,et al.  Solvate Ionic Liquid Electrolyte for Li–S Batteries , 2013 .

[115]  Julian L. Roberts,et al.  Electrochemical reduction of sulfur in aprotic solvents , 1973 .

[116]  Jou-Hyeon Ahn,et al.  Discharge process of Li/PVdF/S cells at room temperature , 2006 .

[117]  Yongju Jung,et al.  The effect of solvent component on the discharge performance of Lithium–sulfur cell containing various organic electrolytes , 2004 .

[118]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[119]  F. Alloin,et al.  Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries , 2013 .

[120]  Soojin Park,et al.  Effects of imidazolium salts on discharge performance of rechargeable lithium–sulfur cells containing organic solvent electrolytes , 2005 .

[121]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[122]  J. Tarascon,et al.  New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells , 1994 .

[123]  Xueping Gao,et al.  Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres , 2010 .

[124]  J. Shim,et al.  The Lithium/Sulfur Rechargeable Cell Effects of Electrode Composition and Solvent on Cell Performance , 2002 .

[125]  J. Kerr,et al.  Chemical reactivity of PF{sub 5} and LiPF{sub 6} in ethylene carbonate/dimethyl carbonate solutions , 2001 .

[126]  W. Lamanna,et al.  The Surface Film Formed on a Lithium Metal Electrode in a New Imide Electrolyte, Lithium Bis(perfluoroethylsulfonylimide) [ LiN ( C 2 F 5 SO 2 ) 2 ] , 1999 .

[127]  Bruno Scrosati,et al.  Polymer electrolytes: Present, past and future , 2011 .

[128]  Jinkui Feng,et al.  Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte , 2006 .

[129]  Shizhao Xiong,et al.  On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium–sulfur batteries , 2013 .

[130]  Junho Ahn,et al.  Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3–TinO2n−1 composite polymer electrolytes for lithium/sulfur battery , 2002 .

[131]  E. Karaseva,et al.  Influence of Lithium Salts on Physicochemical Properties of Lithium Polysulphide Solutions in Sulfolane , 2009 .

[132]  S. Wada,et al.  Electrochemical properties and lithium ion solvation behavior of sulfone–ester mixed electrolytes for high-voltage rechargeable lithium cells , 2008 .

[133]  Fuminori Mizuno,et al.  All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes , 2003 .

[134]  Jou-Hyeon Ahn,et al.  Improvement of cycle property of sulfur electrode for lithium/sulfur battery , 2008 .

[135]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[136]  Zhan Lin,et al.  Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. , 2013, Angewandte Chemie.

[137]  D. T. Sawyer,et al.  Electrochemical reduction of elemental sulfur in aprotic solvents. Formation of a stable S8- species , 1970 .

[138]  Jeffrey Read,et al.  A new direction for the performance improvement of rechargeable lithium/sulfur batteries , 2012 .

[139]  L. Krause,et al.  Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells , 1997 .

[140]  J. Foropoulos,et al.  Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl) imide, (CF3SO2)2NH , 1984 .

[141]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[142]  Nobuya Machida,et al.  Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes , 2004 .

[143]  Shejun Hu,et al.  Lithium-sulfur cell with combining carbon nanofibers–sulfur cathode and gel polymer electrolyte , 2012 .

[144]  F. Alloin,et al.  Revisiting TEGDME/DIOX Binary Electrolytes for Lithium/Sulfur Batteries: Importance of Solvation Ability and Additives , 2013 .

[145]  M. Armand,et al.  Pregnancy: A cloned horse born to its dam twin , 2003, Nature.