Improving Convolutional Neural Network Using Pseudo Derivative ReLU
暂无分享,去创建一个
[1] Jian Sun,et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).
[2] Quoc V. Le,et al. Searching for Activation Functions , 2018, arXiv.
[3] Geoffrey E. Hinton,et al. ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.
[4] Andrew L. Maas. Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .
[5] Geoffrey E. Hinton,et al. Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.
[6] Tianqi Chen,et al. Empirical Evaluation of Rectified Activations in Convolutional Network , 2015, ArXiv.
[7] Sepp Hochreiter,et al. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.
[8] Michael S. Bernstein,et al. ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.
[9] Ross B. Girshick,et al. Fast R-CNN , 2015, 1504.08083.