On the applicability and solution of bilevel optimization models in transportation science: A study on the existence, stability and computation of optimal solutions to stochastic mathematical programs with equilibrium constraints

[1]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[2]  T. Koopmans,et al.  Studies in the Economics of Transportation. , 1956 .

[3]  A. Charnes,et al.  Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil , 1958 .

[4]  C. B. Mcguire,et al.  Studies in the Economics of Transportation , 1958 .

[5]  Stella C. Dafermos,et al.  Traffic assignment problem for a general network , 1969 .

[6]  S. Karamardian The nonlinear complementarity problem with applications, part 1 , 1969 .

[7]  J. M. Buchanan,et al.  External Diseconomies, Corrective Taxes, and Market Structure , 1969 .

[8]  S. Karamardian The nonlinear complementarity problem with applications, part 2 , 1969 .

[9]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[10]  G. M. Vainikko On the convergence of the method of mechanical quadratures for integral equations with discontinuous kernels , 1971 .

[11]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[12]  Larry J. LeBlanc,et al.  AN EFFICIENT APPROACH TO SOLVING THE ROAD NETWORK EQUILIBRIUM TRAFFIC ASSIGNMENT PROBLEM. IN: THE AUTOMOBILE , 1975 .

[13]  Paul Olsen Multistage Stochastic Programming with Recourse As Mathematical Programming in an $L_p $ Space , 1976 .

[14]  R. Rockafellar,et al.  Stochastic Convex Programming: Relatively Complete Recourse and Induced Feasibility , 1976 .

[15]  Carlos F. Daganzo,et al.  On Stochastic Models of Traffic Assignment , 1977 .

[16]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[17]  Larry J. LeBlanc,et al.  CONTINUOUS EQUILIBRIUM NETWORK DESIGN MODELS , 1979 .

[18]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[19]  M Turnquist,et al.  ESTIMATION OF AN ORIGIN-DESTINATION TRIP TABLE BASED ON OBSERVED LINK VOLUMES AND TURNING MOVEMENTS. VOLUME 1: TECHNICAL REPORT , 1980 .

[20]  Y J Gur,et al.  ESTIMATION OF AN ORIGIN-DESTINATION TRIP TABLE BASED ON OBSERVED LINK VOLUMES AND TURNING MOVEMENTS VOLUMES 3-PROGRAM MANUAL , 1980 .

[21]  C. Fisk Some developments in equilibrium traffic assignment , 1980 .

[22]  T. Magnanti,et al.  Equilibria on a Congested Transportation Network , 1981 .

[23]  Carlos F. Daganzo,et al.  Stochastic network equilibrium with multiple vehicle types and asymmetric , 1983 .

[24]  Yosef Sheffi,et al.  Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods , 1985 .

[25]  R. Wets,et al.  Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse , 1986 .

[26]  Patrice Marcotte,et al.  Network design problem with congestion effects: A case of bilevel programming , 1983, Math. Program..

[27]  S. M. Robinson,et al.  Stability in two-stage stochastic programming , 1987 .

[28]  Sang Nguyen,et al.  A unified framework for estimating or updating origin/destination matrices from traffic counts , 1988 .

[29]  Giles Auchmuty Variational principles for variational inequalities , 1989 .

[30]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[31]  U. Kirsch,et al.  On singular topologies in optimum structural design , 1990 .

[32]  Riho Lepp Approximations to stochastic programs with complete recourse , 1990 .

[33]  I. Elishakoff,et al.  Convex models of uncertainty in applied mechanics , 1990 .

[34]  J. Burke An exact penalization viewpoint of constrained optimization , 1991 .

[35]  Hai Yang,et al.  An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts , 1991 .

[36]  R Akcelik,et al.  Travel time functions for transport planning purposes: Davidson's function, its time dependent form and alternative travel time function , 1991 .

[37]  Werner Römisch,et al.  Distribution sensitivity in stochastic programming , 1991, Math. Program..

[38]  Masao Fukushima,et al.  Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems , 1992, Math. Program..

[39]  Terry L. Friesz,et al.  A Simulated Annealing Approach to the Network Design Problem with Variational Inequality Constraints , 1992, Transp. Sci..

[40]  Patrice Marcotte,et al.  Efficient implementation of heuristics for the continuous network design problem , 1992, Ann. Oper. Res..

[41]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[42]  Yasunori Iida,et al.  RISK ASSIGNMENT: A NEW TRAFFIC ASSIGNMENT MODEL CONSIDERING THE RISK OF TRAVEL TIME VARIATION. , 1993 .

[43]  George I. N. Rozvany,et al.  On singular topologies in exact layout optimization , 1994 .

[44]  Gary A. Davis,et al.  Exact local solution of the continuous network design problem via stochastic user equilibrium assignment , 1994 .

[45]  Torbjörn Larsson,et al.  A class of gap functions for variational inequalities , 1994, Math. Program..

[46]  Ruoxin Zhang,et al.  Problems of Hierarchical Optimization in Finite Dimensions , 1994, SIAM J. Optim..

[47]  R. Lepp Projection and discretization methods in stochastic programming , 1994 .

[48]  Jason H. Goodfriend,et al.  Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method , 1995 .

[49]  N. D. Yen Lipschitz Continuity of Solutions of Variational Inequalities with a Parametric Polyhedral Constraint , 1995, Math. Oper. Res..

[50]  Hai Yang Heuristic algorithms for the bilevel origin-destination matrix estimation problem , 1995 .

[51]  Peter Kall,et al.  Stochastic Programming , 1995 .

[52]  M. Patriksson,et al.  Equilibrium characterizations of solutions to side constrained asymmetric traffic assignment models , 1995 .

[53]  Stephen M. Robinson,et al.  Sample-path optimization of convex stochastic performance functions , 1996, Math. Program..

[54]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[55]  Stephen M. Robinson,et al.  Analysis of Sample-Path Optimization , 1996, Math. Oper. Res..

[56]  Y Iida,et al.  Transportation Network Analysis , 1997 .

[57]  Jeffery L. Kennington,et al.  Interfaces in Computer Science and Operations Research , 1997 .

[58]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[59]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[60]  Jane J. Ye,et al.  Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems , 1997, SIAM J. Optim..

[61]  G. Cheng,et al.  ε-relaxed approach in structural topology optimization , 1997 .

[62]  Y. Smeers,et al.  A stochastic version of a Stackelberg-Nash-Cournot equilibrium model , 1997 .

[63]  Gül Gürkan,et al.  Sample-path solutions for simulation optimization problems and stochastic variational inequalities , 1997 .

[64]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[65]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[66]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[67]  J Figueira,et al.  Stochastic Programming , 1998, J. Oper. Res. Soc..

[68]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[69]  M. Patriksson,et al.  SIDE CONSTRAINED TRAFFIC EQUILIBRIUM MODELS: TRAFFIC MANAGEMENT THROUGH LINK TOLLS. , 1998 .

[70]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[71]  Ben Paechter,et al.  THE CONTINUOUS EQUILIBRIUM OPTIMAL NETWORK DESIGN PROBLEM: A GENETIC APPROACH , 1998 .

[72]  Michael Patriksson,et al.  Stochastic mathematical programs with equilibrium constraints , 1999, Oper. Res. Lett..

[73]  Gül Gürkan,et al.  Sample-path solution of stochastic variational inequalities , 1999, Math. Program..

[74]  Michel Théra,et al.  Ill-posed Variational Problems and Regularization Techniques , 1999 .

[75]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[76]  S. Scholtes,et al.  Exact Penalization of Mathematical Programs with Equilibrium Constraints , 1999 .

[77]  Gül Gürkan,et al.  Solving stochastic optimization problems with stochastic constraints: an application in network design , 1999, WSC '99.

[78]  Torbjörn Larsson,et al.  Side constrained traffic equilibrium models: analysis, computation and applications , 1999 .

[79]  Arkadi Nemirovski,et al.  Free Material Design via Semidefinite Programming: The Multiload Case with Contact Conditions , 1999, SIAM J. Optim..

[80]  J. Pang,et al.  Convergence of a Smoothing Continuation Method for Mathematical Progams with Complementarity Constraints , 1999 .

[81]  Hai Yang,et al.  BENEFIT DISTRIBUTION AND EQUITY IN ROAD NETWORK DESIGN PROBLEMS. , 1999 .

[82]  Stephen D. Clark,et al.  Probit-Based Sensitivity Analysis for General Traffic Networks , 2000 .

[83]  M. Patriksson,et al.  Existence and Continuity of Optimal Solutions to Some Structural Topology Optimization Problems Incl , 2002 .

[84]  Michael G.H. Bell,et al.  A game theory approach to measuring the performance reliability of transport networks , 2000 .

[85]  Stein W. Wallace,et al.  Decision Making Under Uncertainty: Is Sensitivity Analysis of Any Use? , 2000, Oper. Res..

[86]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[87]  Stefan Scholtes,et al.  Convergence Properties of a Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2000, SIAM J. Optim..

[88]  Michael J. Maher,et al.  A bi-level programming approach for trip matrix estimation and traffic control problems with stochastic user equilibrium link flows , 2001 .

[89]  Hai Yang,et al.  An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem , 2001 .

[90]  K. Yamazaki,et al.  A new approach for the solution of singular optima in truss topology optimization with stress and local buckling constraints , 2001 .

[91]  Mathias Stolpe,et al.  On the trajectories of the epsilon-relaxation approach for stress-constrained truss topology optimization , 2001 .

[92]  M. Patriksson,et al.  Stochastic bilevel programming in structural optimization , 2001 .

[93]  J. Petersson,et al.  On continuity of the design-to-state mappings for trusses with variable topology , 2001 .

[94]  Stephen D. Clark,et al.  Sensitivity analysis of the probit-based stochastic user equilibrium assignment model , 2002 .

[95]  Hong Kam Lo,et al.  Capacity reliability of a road network: an assessment methodology and numerical results , 2002 .

[96]  Alexander Shapiro,et al.  The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..

[97]  Michael Patriksson,et al.  A Mathematical Model and Descent Algorithm for Bilevel Traffic Management , 2002, Transp. Sci..

[98]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[99]  Michael Patriksson,et al.  On stochastic structural topology optimization , 2002 .

[100]  Michael Patriksson,et al.  Sensitivity Analysis of Aggregated Variational Inequality Problems, with Application to Traffic Equilibria , 2003, Transp. Sci..

[101]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[102]  M. Patriksson,et al.  Stochastic structural topology optimization: discretization and penalty function approach , 2003 .

[103]  Michael Patriksson,et al.  Stochastic structural topology optimization: existence of solutions and sensitivity analyses , 2003 .

[104]  Michael Patriksson,et al.  Stable relaxations of stochastic stress-constrained weight minimization problems , 2003 .

[105]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[106]  W. Römisch Stability of Stochastic Programming Problems , 2003 .

[107]  Torbjörn Larsson,et al.  Inverse Nonlinear Multicommodity Flow Optimization by Column Generation , 2003, Optim. Methods Softw..

[108]  René Henrion,et al.  Hölder and Lipschitz stability of solution sets in programs with probabilistic constraints , 2004, Math. Program..

[109]  D. Ralph,et al.  Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints , 2004 .

[110]  Michael Patriksson,et al.  On the Existence of Solutions to Stochastic Mathematical Programs with Equilibrium Constraints , 2004 .

[111]  Gül Gürkan,et al.  Solving stochastic mathematical programs with complementarity constraints using simulation , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[112]  Michael Patriksson,et al.  Sensitivity Analysis of Traffic Equilibria , 2004, Transp. Sci..

[113]  Donald W. Hearn,et al.  An MPEC approach to second-best toll pricing , 2004, Math. Program..

[114]  Wei Xu,et al.  A Sequential Experimental Approach for Analyzing Second-Best Road Pricing with Unknown Demand Functions , 2005 .

[115]  Søren L. Buhl,et al.  How (In)accurate Are Demand Forecasts in Public Works Projects?: The Case of Transportation , 2005, 1303.6654.

[116]  Huifu Xu,et al.  An MPCC approach for stochastic Stackelberg–Nash–Cournot equilibrium , 2005 .

[117]  Thomas Voice,et al.  Stability of end-to-end algorithms for joint routing and rate control , 2005, CCRV.

[118]  Qiong Wang,et al.  Stochastic traffic engineering for demand uncertainty and risk-aware network revenue management , 2005, TNET.

[119]  Suh-Wen Chiou,et al.  Bilevel programming for the continuous transport network design problem , 2005 .

[120]  M. Patriksson,et al.  On the convergence of stationary sequences in topology optimization , 2005 .

[121]  Stephen D. Clark,et al.  Modelling network travel time reliability under stochastic demand , 2005 .

[122]  Fabio Raciti,et al.  Random equilibrium problems on networks , 2006, Math. Comput. Model..

[123]  Jorge Nocedal,et al.  Interior Methods for Mathematical Programs with Complementarity Constraints , 2006, SIAM J. Optim..

[124]  Werner Römisch,et al.  Stability of Multistage Stochastic Programs , 2006, SIAM J. Optim..

[125]  Agachai Sumalee,et al.  Reliable Network Design Problem: Case with Uncertain Demand and Total Travel Time Reliability , 2006 .

[126]  J. Elíasson,et al.  Equity effects of congestion pricing: Quantitative methodology and a case study for Stockholm , 2006 .

[127]  A. Shapiro Stochastic Programming with Equilibrium Constraints , 2006 .

[128]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[129]  Fanwen Meng,et al.  A Regularized Sample Average Approximation Method for Stochastic Mathematical Programs with Nonsmooth Equality Constraints , 2006, SIAM J. Optim..

[130]  Sven Leyffer,et al.  Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints , 2006, SIAM J. Optim..

[131]  Anthony Chen,et al.  A simulation-based multi-objective genetic algorithm (SMOGA) procedure for BOT network design problem , 2006 .

[132]  Benjamin F. Hobbs,et al.  Nash-Cournot Equilibria in Electric Power Markets with Piecewise Linear Demand Functions and Joint Constraints , 2007, Oper. Res..

[133]  Kathryn Stewart,et al.  Tolling traffic links under stochastic assignment: Modelling the relationship between the number and price level of tolled links and optimal traffic flows , 2007 .

[134]  Satish V. Ukkusuri,et al.  Robust Transportation Network Design Under Demand Uncertainty , 2007, Comput. Aided Civ. Infrastructure Eng..

[135]  M. Patriksson,et al.  Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design , 2007 .

[136]  Agachai Sumalee,et al.  Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user-classes , 2007 .

[137]  Michael Patriksson,et al.  Robust bi-level optimization models in transportation science , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[138]  S. K. Mishra,et al.  Nonconvex Optimization and Its Applications , 2008 .

[139]  Daniel Ralph,et al.  Mathematical programs with complementarity constraints in traffic and telecommunications networks , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[140]  Alexander Shapiro,et al.  Stochastic programming approach to optimization under uncertainty , 2007, Math. Program..

[141]  Laura Wynter Stochastic Bilevel Programs , 2009, Encyclopedia of Optimization.