Gene technology for grain legumes: can it contribute to the food challenge in developing countries?

[1]  D. Davies,et al.  A simple system for pea transformation , 1997, Plant Cell Reports.

[2]  Sanchayita Kar,et al.  Efficient transgenic plant regeneration throughAgrobacterium-mediated transformation of Chickpea (Cicer arietinum L.) , 1996, Plant Cell Reports.

[3]  M. Montagu,et al.  Electroporation-mediated DNA delivery to seedling tissues ofPhaseolus vulgaris L. (common bean) , 2005, Plant Cell Reports.

[4]  T. Higgins,et al.  Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor , 2004, Molecular Breeding.

[5]  M. Jacobs,et al.  In vitro regeneration and transformation of pigeonpea [Cajanus cajan (L.) Millsp] , 2003, Molecular Breeding.

[6]  T. Pickardt,et al.  Agrobacterium-mediated transformation of Vicia faba , 2001, Molecular Breeding.

[7]  A. Nadolska-Orczyk,et al.  Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.) , 2000, Molecular Breeding.

[8]  E. Rech,et al.  Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus , 1998, Molecular Breeding.

[9]  Sampa Das,et al.  Expression of cryIA(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae , 1997, Transgenic Research.

[10]  B. Muthukumar,et al.  Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumefaciens , 1996, Plant Cell Reports.

[11]  J. Sanford,et al.  Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment , 1996, Theoretical and Applied Genetics.

[12]  R. Jarret,et al.  Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens , 1996, Plant Cell Reports.

[13]  T. Frew,et al.  Transformation of peas (Pisum sativum L.) using immature cotyledons , 1995, Plant Cell Reports.

[14]  B. Muthukumar,et al.  Regeneration of plants from primary leaves of cowpea , 1995, Plant Cell, Tissue and Organ Culture.

[15]  D. Pental,et al.  Regeneration of pigeonpea (Cajanus cajan) from cotyledonary node via multiple shoot formation , 1994, Plant Cell Reports.

[16]  S. Riazuddin,et al.  Strain and cultivar specificity in the Agrobacterium-chickpea interaction , 1994, Plant Cell Reports.

[17]  S. Singh,et al.  Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing , 1994, Theoretical and Applied Genetics.

[18]  S. Eapen,et al.  Organogenesis and embryogenesis from diverse explants in pigeonpea (Cajanus cajan L.) , 1994, Plant Cell Reports.

[19]  S. Eapen,et al.  Plant regeneration from leaf discs of peanut and pigeonpea: Influence of benzyladenine, indoleacetic acid and indoleacetic acid-amino acid conjugates , 1993, Plant Cell, Tissue and Organ Culture.

[20]  G. Frugis,et al.  Genetic transformation in the grain legume Cicer arietinum L. (chickpea) , 1993, Plant Cell Reports.

[21]  T. Warkentin,et al.  Agrobacterium tumefaciens-mediated beta-glucuronidase (GUS) gene expression in lentil (Lens culinaris Medik.) tissues , 1992, Plant Cell Reports.

[22]  T. Warkentin,et al.  Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agrobacterium tumefaciens , 1991, Plant Cell Reports.

[23]  R. Birch,et al.  Efficient transformation and regeneration of diverse cultivars of peanut (Arachis hypogaea L.) by particle bombardment into embryogenic callus produced from mature seeds , 2004, Molecular Breeding.

[24]  D. Songstad,et al.  Advances in alternative DNA delivery techniques , 2004, Plant Cell, Tissue and Organ Culture.

[25]  T. Davis,et al.  Zeatin-induced shoot regeneration from immature chickpea (Cicer arietinum L.) cotyledons , 2004, Plant Cell, Tissue and Organ Culture.

[26]  M. Ruiz,et al.  Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. , 2004, Plant Cell, Tissue and Organ Culture.

[27]  A. McHughen,et al.  Plant regeneration of the legume Lens culinaris Medik. (lentil) in vitro , 2004, Plant Cell, Tissue and Organ Culture.

[28]  M. D. Block,et al.  The cell biology of plant transformation: Current state, problems, prospects and the implications for the plant breeding , 2004, Euphytica.

[29]  R. Dixon,et al.  Genetic transformation of green bean callus via Agrobacterium mediated DNA transfer , 2004, Plant Cell Reports.

[30]  D. Mccabe,et al.  Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration , 2004, Plant Cell Reports.

[31]  J. Vanderleyden,et al.  Beans (Phaseolus spp.) – model food legumes , 2004, Plant and Soil.

[32]  J. Ikea,et al.  Stable gene transformation in cowpea (Vigna unguiculata L. walp.) using particle gun method , 2003 .

[33]  K. Sharma,et al.  An efficient protocol for shoot regeneration and genetic transformation of pigeonpea [Cajanus cajan (L.) Millsp.] using leaf explants , 2003, Plant Cell Reports.

[34]  P. K. Jaiwal,et al.  Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens , 2003, Plant Cell Reports.

[35]  C. Vance,et al.  Legumes: Importance and Constraints to Greater Use , 2003, Plant Physiology.

[36]  D. Somers,et al.  Recent Advances in Legume Transformation , 2003, Plant Physiology.

[37]  Trevor L. Wang,et al.  Can We Improve the Nutritional Quality of Legume Seeds? , 2003, Plant Physiology.

[38]  C. Redmond,et al.  Recent Advances in Soybean Transformation , 2003 .

[39]  A. Khandelwal,et al.  Expression of hemagglutinin protein of Rinderpest virus in transgenic pigeon pea [Cajanus cajan (L.) Millsp.] plants , 2003, Plant Cell Reports.

[40]  M. Montagu,et al.  Prolific regeneration of fertile plants from green nodular callus induced from meristematic tissues in Lathyrus sativus L. (grass pea) , 2002 .

[41]  M. Van Montagu,et al.  An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray , 2002, Plant Cell Reports.

[42]  E. Rech,et al.  Transgenic Dry Bean Tolerant to the Herbicide Glufosinate Ammonium , 2002 .

[43]  Y. Zuily-Fodil,et al.  Direct whole plant regeneration of cowpea [Vigna unguiculata (L.) Walp] from cotyledonary node thin cell layer explants , 2002 .

[44]  O. Obembe Regeneration and genetic transformation incowpea , 2002 .

[45]  K. Sharma,et al.  Recent developments in transgenics for abiotic stress in legumes of the semi-arid tropics , 2002 .

[46]  A. McHughen,et al.  Regeneration and micrografting of lentil shoots , 2001, In Vitro Cellular & Developmental Biology - Plant.

[47]  P. K. Jaiwal,et al.  Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek) - a recalcitrant grain legume. , 2001, Plant science : an international journal of experimental plant biology.

[48]  T. Higgins,et al.  Increased efficiency of wool growth and live weight gain in Merino sheep fed transgenic lupin seed containing sunflower albumin , 2001 .

[49]  A. Ganapathi,et al.  High frequency plant regeneration via somatic embryogenesis in cell suspension cultures of cowpea, Vigna unguiculata (L.) Walp. , 2000, In Vitro Cellular & Developmental Biology - Plant.

[50]  Sharma.,et al.  An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. , 2000, Plant science : an international journal of experimental plant biology.

[51]  Mahon,et al.  The ability of pea transformation technology to transfer genes into peas adapted to western Canadian growing conditions. , 2000, Plant science : an international journal of experimental plant biology.

[52]  K. Rao,et al.  Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants , 2000 .

[53]  R. Jarret,et al.  Transgenic Peanut (Arachis hypogaea) , 2000 .

[54]  R. Islam,et al.  Shoot regeneration from internode derived callus of chickpea (Cicer arietinum L.). , 2000 .

[55]  P. Chee,et al.  Transgenic Soybean (Glycine max) , 2000 .

[56]  A. Sagare,et al.  Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) embryo axes , 2000, Plant Cell Reports.

[57]  K. Shinozaki,et al.  Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. , 2000, Current opinion in plant biology.

[58]  H. Getahun,et al.  Epidemic of neurolathyrism in Ethiopia , 1999, The Lancet.

[59]  F. Wambugu Why Africa needs agricultural biotech , 1999, Nature.

[60]  J. M. Al-Khayri,et al.  Ethylene inhibitors promote in vitro regeneration of cowpea (Vigna unguiculata L.) , 1999, In Vitro Cellular & Developmental Biology - Plant.

[61]  E. Anderson,et al.  Genotypic response of cowpea Vigna unguiculata (L.) to in vitro regeneration from cotyledon explants , 1998, In Vitro Cellular & Developmental Biology - Plant.

[62]  Clive James,et al.  Global status of commercialized transgenic crops : 1999 , 1999 .

[63]  M. Yücel,et al.  Gus gene delivery and expression in lentil cotyledonary nodes using particle bombardment , 1999 .

[64]  Shree P. Singh Integrated Genetic Improvement , 1999 .

[65]  N. Geetha,et al.  High frequency induction of multiple shoots and plant regeneration from seedling explants of pigeonpea (Cajanus cajan l.) , 1998 .

[66]  K. Krishnamurthy,et al.  Plant regeneration in pigeonpea [Cajanus cajan (L.) Millsp.] by organogenesis , 1998, Plant Cell Reports.

[67]  P. Ozias‐Akins,et al.  Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression , 1998, Plant Cell Reports.

[68]  G. Poppy,et al.  Insect-resistant transgenic plants , 1998 .

[69]  P. Ozias‐Akins,et al.  Transformation of peanut with a soybean vspB promoter-uidA chimeric gene. I. Optimization of a transformation system and analysis of GUS expression in primary transgenic tissues and plants. , 1998, Physiologia plantarum.

[70]  Godelieve Gheysen,et al.  Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications , 1998 .

[71]  A. Pellegrineschi In vitro plant regeneration via organogenesis of cowpea [Vigna unguiculata (L.) Walp.] , 1997, Plant Cell Reports.

[72]  N. Gozukirmizi,et al.  HIGH PERCENTAGE OF REGENERATION AND TRANSFORMATION IN CHICKPEA , 1997 .

[73]  B. Eggum,et al.  Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Gérard Duc Faba bean (Vicia faba L.) , 1997 .

[75]  H. T. Stalker Peanut (Arachis hypogaea L.) , 1997 .

[76]  Jeffrey D. Ehlers,et al.  Cowpea (Vigna unguiculata L. Walp.) , 1997 .

[77]  P. Christou Biotechnology applied to grain legumes , 1997 .

[78]  R. Cousin Peas (Pisum sativum L.) , 1997 .

[79]  M. Montagu,et al.  Agrobacterium-mediated transformation of Phaseolus acutifolius A. Gray , 1997, Theoretical and Applied Genetics.

[80]  V. Citovsky,et al.  The Agrobacterium DNA Transfer Complex , 1997 .

[81]  P. Smith,et al.  Genetic Transformation and Regeneration of Legumes. , 1997 .

[82]  S. Rossi,et al.  Susceptibility of common and tepary beans to Agrobacterium spp. strains and improvement of Agrobacterium-mediated transformation using microprojectile bombardment , 1996 .

[83]  P. Lurquin,et al.  Transgenic grain legumes obtained byin planta electroporation-mediated gene transfer , 1996, Molecular biotechnology.

[84]  I. Barker,et al.  The Biology of the Tospoviruses , 1996 .

[85]  A. Ganapathi,et al.  SOMATIC EMBRYOGENESIS IN CELL SUSPENSION CULTURE OF COWPEA (VIGNA UNGUICULATA (L.) WALP) , 1995 .

[86]  S. Gollasch,et al.  Bean [alpha]-Amylase Inhibitor Confers Resistance to the Pea Weevil (Bruchus pisorum) in Transgenic Peas (Pisum sativum L.) , 1995, Plant physiology.

[87]  A. Finazzi Agro',et al.  Lentil root protoplasts: a transient expression system suitable for coelectroporation of monoclonal antibodies and plasmid molecules. , 1995, Biochimica et biophysica acta.

[88]  T. Higgins,et al.  Transgenic Pea Seeds Expressing the α-Amylase Inhibitor of the Common Bean are Resistant to Bruchid Beetles , 1994, Bio/Technology.

[89]  F. Bliss,et al.  Tumor Formation and β-Glucuronidase Expression in Phaseolus vulgaris Inoculated with Agrobacterium tumefaciens , 1994 .

[90]  H. Schroeder,et al.  Transformation and Regeneration of Two Cultivars of Pea (Pisum sativum L.) , 1993, Plant physiology.

[91]  P. Saxena,et al.  Thidiazuron induces high-frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris) , 1992 .

[92]  E. Filippone,et al.  Gene Transfer by Cocultivation of Mature Embryos with Agrobacterium tumefaciens: Application to Cowpea (Vigna unguiculata Walp) , 1991 .

[93]  H. K. Cheema,et al.  Clonal Multiplication via Multiple Shoots in Some Legumes (Vigna Unguiculata and Cajanus Cajan) , 1991 .

[94]  P. Gepts,et al.  Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.) , 1991 .

[95]  I. Potrykus Gene transfer to plants: assessment and perspectives , 1990 .

[96]  C. Ryan Protease Inhibitors in Plants: Genes for Improving Defenses Against Insects and Pathogens , 1990 .

[97]  S. Nielsen,et al.  Biological effects of plant lectins on the cowpea weevil. , 1990 .

[98]  D. Boulter,et al.  A novel mechanism of insect resistance engineered into tobacco , 1987, Nature.

[99]  T. Klein,et al.  DELIVERY OF SUBSTANCES INTO CELLS AND TISSUES USING A PARTICLE BOMBARDMENT PROCESS , 1987 .

[100]  R. Goldbach,et al.  Transformation of Cowpea Vigna unguiculata with a Full-Length DNA Copy of Cowpea Mosaic Virus M-RNA , 1987 .

[101]  D. Nicholas,et al.  Properties of glutamine synthetase of Bacteroids from root nodules of Glycine max , 1986 .

[102]  R. Goldbach,et al.  Transformation of Cowpea Vigna unguiculata Cells with an Antibiotic Resistance Gene Using a Ti-Plasmid-Derived Vector , 1986 .

[103]  B. Eggum,et al.  Factors affecting the protein quality of pigeonpea (Cajanus cajan L.) , 1984 .

[104]  W. Erskine Evaluation and Utilization of Lentil Germplasm in an International Breeding Program , 1984 .

[105]  Ashwani Kumar,et al.  Plantlet regeneration from different callus cultures of pigeonpea (Cajanus cajan L.) , 1983 .