DESIGN AND SIMULATION OF FAULT-TOLERANT QUANTUM-DOT CELLULAR AUTOMATA (QCA) NOT GATES

[1]  Gary H. Bernstein,et al.  Experimental demonstration of a binary wire for quantum-dot cellular automata , 1999 .

[2]  C. Lent,et al.  Clocked molecular quantum-dot cellular automata , 2003 .

[3]  C. Lent,et al.  Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. , 2003, Journal of the American Chemical Society.

[4]  G. Tóth,et al.  Power gain in a quantum-dot cellular automata latch , 2002 .

[5]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[6]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[7]  Jing Huang,et al.  Defect characterization for scaling of QCA devices [quantum dot cellular automata ] , 2004 .

[8]  Charles G. Smith,et al.  Computation Without Current , 1999, Science.

[9]  F. Lombardi,et al.  Testing of quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[10]  G. Tóth,et al.  Experimental demonstration of a latch in clocked quantum-dot cellular automata , 2001 .

[11]  Amir Fijany,et al.  New Design for Quantum Dots Cellular Automata to obtain Fault Tolerant Logic Gates , 2001 .

[12]  G. Tóth,et al.  QUASIADIABATIC SWITCHING FOR METAL-ISLAND QUANTUM-DOT CELLULAR AUTOMATA , 1999, cond-mat/0004457.

[13]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[14]  C. Lent,et al.  Demonstration of a six-dot quantum cellular automata system , 1998 .

[15]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .