The amazing progress of high-power ultrafast thin-disk lasers

Ultrafast lasers continue to be at the forefront of many scientific breakthroughs and technological achievements and progress in the performance of these systems continue to open doors in many new and exciting interdisciplinary fields. In particular, in the last decade, the average power of ultrafast lasers has seen a significant increase, opening up exciting new perspectives. Among the different technologies that have shaped these advances, thin-disk lasers have generated particularly spectacular breakthroughs. We review here the latest state-of-the-art of the technology and highlight new application fields of these cutting-edge laser systems.

[1]  Symmetrically-Cooled Ti:sapphire Thin-Disk Laser Using Single-Crystal Diamond Heat Spreaders , 2018 .

[2]  Fatih Ömer Ilday,et al.  High-Repetition-Rate Ultrafast Fiber Lasers for Material Processing , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Jens Limpert,et al.  3.5  kW coherently combined ultrafast fiber laser. , 2018, Optics letters.

[5]  Jens Limpert,et al.  High photon flux table-top coherent extreme-ultraviolet source , 2014, Nature Photonics.

[6]  F. Kärtner,et al.  Stabilization of solitonlike pulses with a slow saturable absorber. , 1995, Optics letters.

[7]  Ursula Keller,et al.  Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator , 2015 .

[8]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[9]  J. Brons,et al.  Carrier‐Envelope‐Offset Frequency Stable 100 W‐Level Femtosecond Thin‐Disk Oscillator , 2019, Laser & Photonics Reviews.

[10]  C. Saraceno,et al.  Frequency comb offset dynamics of SESAM modelocked thin disk lasers. , 2015, Optics express.

[11]  Thomas Graf,et al.  Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. , 2015, Optics express.

[12]  Oleg Pronin,et al.  Kerr-Lens Mode-Locked 2-μm Thin-Disk Lasers , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Matthias Golling,et al.  SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation. , 2013, Optics letters.

[14]  P. Georges,et al.  High-power two-cycle ultrafast source based on hybrid nonlinear compression. , 2019, Optics express.

[15]  T. Metzger,et al.  Ultrafast Thin-Disk Lasers , 2016 .

[16]  F Aslani,et al.  Optical rectification of a 100  W average power mode-locked thin-disk oscillator. , 2018, Optics letters.

[17]  H. Hoffmann,et al.  Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. , 2010, Optics letters.

[18]  Peter Russbueldt,et al.  Nonlinear pulse compression in a multi-pass cell. , 2016, Optics letters.

[19]  Daniel Flamm,et al.  High-quality tailored-edge cleaving using aberration-corrected Bessel-like beams. , 2018, Optics letters.

[20]  Ferenc Krausz,et al.  High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification. , 2009, Optics letters.

[21]  Marwan Abdou Ahmed,et al.  Exploiting nonlinear spectral broadening in a 400 W Yb:YAG thin-disk multipass amplifier to achieve 2 mJ pulses with sub-150 fs duration , 2018, Optics Communications.

[22]  R. Lange,et al.  Direct regenerative amplification of femtosecond pulses to the multimillijoule level. , 2016, Optics letters.

[23]  C. Hönninger,et al.  Diode-pumped thin-disk Yb:YAG regenerative amplifier , 1997 .

[24]  V. Wittwer,et al.  Kerr lens mode-locked Yb:CALGO thin-disk laser. , 2018, Optics letters.

[25]  Ivo Zawischa,et al.  Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion. , 2012, Optics express.

[26]  V. Pervak,et al.  All-solid-state multipass spectral broadening to sub-20  fs. , 2018, Optics letters.

[27]  J Brons,et al.  High-power Kerr-lens mode-locked Yb:YAG thin-disk oscillator in the positive dispersion regime. , 2012, Optics letters.

[28]  R. Kienberger,et al.  What will it take to observe processes in 'real time'? , 2014, Nature Photonics.

[29]  Ursula Keller Semiconductor saturable absorber mirror (SESAM) , 2016 .

[30]  K. Michel,et al.  Towards a Joule-Class Ultrafast Thin-Disk Based Amplifier at Kilohertz Repetition Rate , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[31]  K. Petermann,et al.  High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation , 2009 .

[32]  T. Graf,et al.  Thin-disk multipass amplifier for fs pulses delivering 400 W of average and 2.0 GW of peak power for linear polarization as well as 235 W and 1.2 GW for radial polarization , 2017 .

[33]  P. Schunemann,et al.  Multi-watt, multi-octave, mid-infrared femtosecond source , 2018, Science Advances.

[34]  F. Stutzki,et al.  Ultrafast thulium fiber laser system emitting more than 1  kW of average power. , 2018, Optics letters.

[35]  Matthias Golling,et al.  275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. , 2012, Optics express.

[37]  Rüdiger Paschotta,et al.  Passive mode locking with slow saturable absorbers , 2001 .

[38]  V. Pervak,et al.  Multipass spectral broadening of 18  mJ pulses compressible from 1.3  ps to 41  fs. , 2018, Optics letters.

[39]  Ferenc Krausz,et al.  1  kW, 200  mJ picosecond thin-disk laser system. , 2017, Optics letters.

[40]  T. Graf,et al.  Thin-disk laser operation of Ti:sapphire. , 2017, Optics letters.

[41]  Marcel Schultze,et al.  Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime. , 2008, Optics letters.

[42]  Ursula Keller,et al.  Femtosecond laser oscillators for high-field science , 2008 .

[43]  F. Krausz,et al.  Kerr lens mode locking. , 1992, Optics letters.

[44]  R. Gebs,et al.  Compact gigawatt-class sub-picosecond Yb:YAG thin-disk regenerative chirped-pulse amplifier with high average power at up to 800 kHz , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[45]  T. Graf,et al.  Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime , 2009, IEEE Journal of Quantum Electronics.

[47]  T. Südmeyer,et al.  16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser. , 2000, Optics letters.

[48]  V. Pervak,et al.  High‐Power, High‐Efficiency Tm:YAG and Ho:YAG Thin‐Disk Lasers , 2018 .

[49]  Matthias Golling,et al.  62-fs Pulses from a SESAM Modelocked Yb:CALGO Thin Disk Laser , 2013 .

[50]  M. Hoffmann,et al.  Discrete Similariton and Dissipative Soliton Modelocking for Energy Scaling Ultrafast Thin-Disk Laser Oscillators , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[51]  Rudolf Weber,et al.  Efficient High-quality Processing of CFRP with a kW Ultrafast Thin-disk Laser , 2015 .

[52]  Thomas Graf,et al.  1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses. , 2013, Optics letters.

[53]  Ferenc Krausz,et al.  Energy scaling of Kerr-lens mode-locked thin-disk oscillators. , 2014, Optics letters.

[54]  Matthias Golling,et al.  Toward Millijoule-Level High-Power Ultrafast Thin-Disk Oscillators , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  C. Saraceno,et al.  Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup , 2013 .

[56]  Matthias Golling,et al.  Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power. , 2014, Optics letters.

[57]  F. Krausz,et al.  Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. , 2016, Optics letters.

[58]  Benoit Debord,et al.  Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression. , 2014, Optics letters.

[59]  Rudolf Weber,et al.  Heat accumulation controlled surface functionalization of stainless steel with structuring rates up to 500 mm2/s , 2018 .