Noncoding regulatory sequences of Ciona exhibit strong correspondence between evolutionary constraint and functional importance.

We show that sequence comparisons at different levels of resolution can efficiently guide functional analyses of regulatory regions in the ascidians Ciona savignyi and Ciona intestinalis. Sequence alignments of several tissue-specific genes guided discovery of minimal regulatory regions that are active in whole-embryo reporter assays. Using the Troponin I (TnI) locus as a case study, we show that more refined local sequence analyses can then be used to reveal functional substructure within a regulatory region. A high-resolution saturation mutagenesis in conjunction with comparative sequence analyses defined essential sequence elements within the TnI regulatory region. Finally, we found a significant, quantitative relationship between function and sequence divergence of noncoding functional elements. This work demonstrates the power of comparative sequence analysis between the two Ciona species for guiding gene regulatory experiments.

[1]  Michael Brudno,et al.  Fast and sensitive multiple alignment of large genomic sequences , 2003, BMC Bioinformatics.

[2]  N. Satoh,et al.  Ascidian larva reveals ancient origin of vertebrate-skeletal-muscle troponin I characteristics in chordate locomotory muscle. , 2003, Molecular biology and evolution.

[3]  Vincent Bertrand,et al.  Neural Tissue in Ascidian Embryos Is Induced by FGF9/16/20, Acting via a Combination of Maternal GATA and Ets Transcription Factors , 2003, Cell.

[4]  M. Nóbrega,et al.  Scanning Human Gene Deserts for Long-Range Enhancers , 2003, Science.

[5]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[6]  N. Satoh,et al.  A genomewide survey of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[7]  N. Satoh,et al.  A genomewide survey of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[8]  M. Levine,et al.  A genomewide survey of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[9]  P. Sternberg,et al.  cis-Regulatory control of three cell fate-specific genes in vulval organogenesis of Caenorhabditis elegans and C. briggsae. , 2003, Developmental biology.

[10]  Chuong B. Do,et al.  Access the most recent version at doi: 10.1101/gr.926603 References , 2003 .

[11]  Paul Richardson,et al.  The Draft Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins , 2002, Science.

[12]  Takeshi Kawashima,et al.  A cDNA resource from the basal chordate Ciona intestinalis , 2002, Genesis.

[13]  Michael Levine,et al.  Genome-wide identification of tissue-specific enhancers in the Ciona tadpole , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Berthold Göttgens,et al.  Transcriptional regulation of the stem cell leukemia gene (SCL)--comparative analysis of five vertebrate SCL loci. , 2002, Genome research.

[15]  James J. Lee,et al.  Muscle development and lineage-specific expression of CiMDF, the MyoD-family gene of Ciona intestinalis. , 2002, Developmental biology.

[16]  Martin G. Reese,et al.  Application of a Time-delay Neural Network to Promoter Annotation in the Drosophila Melanogaster Genome , 2001, Comput. Chem..

[17]  M Kanehisa,et al.  Large-scale cDNA analysis of the maternal genetic information in the egg of Halocynthia roretzi for a gene expression catalog of ascidian development. , 2001, Development.

[18]  K. Hastings,et al.  mRNA 5'-leader trans-splicing in the chordates. , 2001, Genes & development.

[19]  M. Levine,et al.  The regulation of forkhead/HNF-3beta expression in the Ciona embryo. , 2001, Developmental biology.

[20]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[21]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[22]  C. Lambert,et al.  Mechanism of the block to hybridization and selfing between the sympatric ascidians Ciona intestinalis and Ciona savignyi. , 2000, Molecular reproduction and development.

[23]  M. Levine,et al.  Regulation of Ci-tropomyosin-like, a Brachyury target gene in the ascidian, Ciona intestinalis. , 1999, Development.

[24]  W. Smith,et al.  Mutations affecting tail and notochord development in the ascidian Ciona savignyi. , 1999, Development.

[25]  K. Hotta,et al.  Brachyury downstream notochord differentiation in the ascidian embryo. , 1999, Genes & development.

[26]  J. Fickett,et al.  Identification of regulatory regions which confer muscle-specific gene expression. , 1998, Journal of molecular biology.

[27]  M. Levine,et al.  Lineage-specific regulation of the Ciona snail gene in the embryonic mesoderm and neuroectoderm. , 1998, Developmental biology.

[28]  K. Hastings,et al.  Tissue-specific Alternative Splicing of Ascidian Troponin I Isoforms , 1997, The Journal of Biological Chemistry.

[29]  M. Levine,et al.  Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. , 1997, Development.

[30]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[31]  N. Satoh,et al.  Developmental Biology of Ascidians , 1995 .

[32]  D. Labie,et al.  Molecular Evolution , 1991, Nature.

[33]  H. Nishida,et al.  Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. , 1987, Developmental biology.

[34]  N. Satoh,et al.  Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. II. The 16- and 32-cell stages. , 1985, Developmental biology.

[35]  N. Satoh,et al.  Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. I. Up to the eight-cell stage. , 1983, Developmental biology.

[36]  C. A. Thomas,et al.  Molecular cloning. , 1977, Advances in pathobiology.

[37]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.