Operando DRIFT Spectroscopy Characterization of Intermediate Species on Catalysts Surface in VOC Removal from Air by Non-thermal Plasma Assisted Catalysis

An innovative plasma discharge reactor was developed to fit an infrared cell and to allow the in situ characterization of isopropanol (IPA) and toluene decomposition at the surface of three metal oxides (γ-Al2O3, TiO2 and CeO2). The impact of the plasma discharge on the conversion of these pollutants, with the material placed in the discharge area, was studied under real time conditions at atmospheric pressure via infrared analysis. The plasma treatment of IPA molecules led to the formation of acetone, propene, acetic acid and/or formic acid. By contrast, the toluene oxidation led to the rapid opening of the aromatic ring, followed by the total oxidation through carboxylic formation of the species arising from the toluene molecules fragmentation.

[1]  J. Coates Interpretation of Infrared Spectra, A Practical Approach , 2006 .

[2]  Christophe Leys,et al.  Non-thermal plasmas for non-catalytic and catalytic VOC abatement. , 2011, Journal of hazardous materials.

[3]  M. Kogler,et al.  In Situ FT-IR Spectroscopic Study of CO2 and CO Adsorption on Y2O3, ZrO2, and Yttria-Stabilized ZrO2 , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[4]  P. Vervisch,et al.  Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters , 2006 .

[5]  N. Parkyns The surface properties of metal oxides. Part II. An infrared study of the adsorption of carbon dioxide on γ-alumina , 1969 .

[6]  Non-Thermal Plasma Assisted Regeneration of Acetone Adsorbed TiO2 Surface , 2013, Plasma Chemistry and Plasma Processing.

[7]  D. Lee,et al.  An FTIR spectral investigation of the structural species found on alumina surfaces , 1995 .

[8]  T. Berndt,et al.  Gas-phase reaction of OH radicals with benzene: products and mechanism , 2001 .

[9]  Philip G. Harrison,et al.  Tin oxide surfaces. Part 1.—Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide , 1975 .

[10]  H. Knözinger,et al.  Effect of foreign ion additives on ceria surface reactivity towards isopropanol adsorption and decomposition: An infrared investigation , 1990 .

[11]  Vicki H. Grassian,et al.  FT-IR Study of Water Adsorption on Aluminum Oxide Surfaces , 2003 .

[12]  R. Hicks,et al.  Characterization of the Active Species in the Afterglow of a Nitrogen and Helium Atmospheric-Pressure Plasma , 2002 .

[13]  Jen-Shih Chang,et al.  Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor , 1995 .

[14]  I. Wachs Infrared spectroscopy of supported metal oxide catalysts , 1995 .

[15]  G. Busca,et al.  An FT-IR and flow reactor study of the conversion of propane on γ-Al2O3 in oxygen-containing atmosphere , 2000 .

[16]  Jo Dewulf,et al.  Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review , 2008 .

[17]  I. Barnes,et al.  ATMOSPHERIC CHEMISTRY OF BENZENE OXIDE/OXEPIN , 1997 .

[18]  R. Ono,et al.  Investigation of Humidity Effect on Atmospheric Plasma Decomposition of Toxic Gas With Direct Optical Measurement of OH Radicals , 2014 .

[19]  P. Lukeš,et al.  Plasmachemical oxidation processes in a hybrid gas–liquid electrical discharge reactor , 2005 .

[20]  Pascal Tristant,et al.  Atmospheric pressure plasmas: A review , 2006 .

[21]  F. Lévy,et al.  Photocatalytic decomposition of acetone over dc-magnetron sputtering supported vanadia/TiO2 catalysts , 2009 .

[22]  Narengerile,et al.  Acetone decomposition by water plasmas at atmospheric pressure , 2012 .

[23]  V. Herrero,et al.  Ion energy distributions for the identification of active species and processes in low pressure hollow cathode discharges , 2009 .

[24]  F. Thibault-Starzyk,et al.  Microsecond time-resolved Fourier transform infrared analytics in a low pressure glow discharge reactor. , 2010, The Review of scientific instruments.

[25]  P. Christensen,et al.  An in situ and downstream study of non-thermal plasma chemistry in an air fed dielectric barrier discharge (DBD) , 2015 .

[26]  V. Buch,et al.  Vibrational Spectroscopy and Modeling of the Surface and Subsurface of Ice and of Ice−Adsorbate Interactions , 1997 .

[27]  M. Meyyappan,et al.  Fourier-transform infrared and optical emission spectroscopy of CF4/O2/Ar mixtures in an inductively coupled plasma , 2003 .

[28]  J. Tatibouët,et al.  Insights into the Mechanisms of Isopropanol Conversion on γ‐Al2O3 by Dielectric Barrier Discharge , 2012 .

[29]  L. H. Little,et al.  Infrared Spectra of Adsorbed Species , 1966 .

[30]  Philippe Sautet,et al.  Hydroxyl Groups on γ-Alumina Surfaces: A DFT Study , 2002 .

[31]  T. C. Manley The Electric Characteristics of the Ozonator Discharge , 1943 .

[32]  M. A. Hasan,et al.  Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation , 2003 .

[33]  D. Ye,et al.  Hydroxyl Radicals Formation in Dielectric Barrier Discharge During Decomposition of Toluene , 2010 .

[34]  R. Karvembu,et al.  Catalytic nonthermal plasma reactor for the abatement of low concentrations of isopropanol , 2010 .

[35]  V. Buch,et al.  Infrared Spectra of Large H2O Clusters: New Understanding of the Elusive Bending Mode of Ice , 2001 .

[36]  K. Cen,et al.  Non-Thermal Plasmas for VOCs Abatement , 2014, Plasma Chemistry and Plasma Processing.

[37]  V. Rives,et al.  FTIR study of isopropanol reactivity on calcined layered double hydroxides , 2001 .

[38]  Tianle Zhu,et al.  Degradation of phenol in mists by a non-thermal plasma reactor. , 2011, Chemosphere.

[39]  W. Liang,et al.  Volatile organic compounds decomposition using nonthermal plasma coupled with a combination of catalysts , 2011 .

[40]  F. Thibault-Starzyk,et al.  In situ FTIR studies of propene adsorption over Ag- and Cu-exchanged Y zeolites , 2012 .

[41]  P. Harrison,et al.  Tin oxide surfaces. Part 17.—An infrared and thermogravimetric analysis of the thermal dehydration of tin(IV) oxide gel , 1987 .

[42]  Hyun-Ha Kim,et al.  Nonthermal Plasma Processing for Air‐Pollution Control: A Historical Review, Current Issues, and Future Prospects , 2004 .

[43]  N. Bion,et al.  Au/xCeO2/Al2O3 catalysts for VOC elimination: oxidation of 2-propanol , 2013 .

[44]  Hyun-Ha Kim,et al.  A Multidisciplinary Approach to Understand the Interactions of Nonthermal Plasma and Catalyst: A Review , 2015 .

[45]  D. Leung,et al.  Byproducts and pathways of toluene destruction via plasma-catalysis , 2011 .

[46]  A. Rousseau,et al.  Oxidation of isopropanol and acetone adsorbed on TiO2 under plasma generated ozone flow: Gas phase and adsorbed species monitoring , 2014 .

[47]  G. Ghiotti,et al.  Infrared spectroscopic characterization of the *-alumina surface , 1976 .

[48]  Ulrich Kogelschatz,et al.  From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges , 1999 .

[49]  A. Bogaerts,et al.  Gas discharge plasmas and their applications , 2002 .

[50]  G. Guella,et al.  Ion chemistry in gaseous discharges at atmospheric pressure , 2009 .