A practical approach to crosstalk noise verification of static CMOS designs

In deep submicron technologies, coupling capacitance significantly dominates the total parasitic capacitance. This causes crosstalk noise to be induced on quiescent signals which could lead to catastrophic failures. This paper provides an overview of the issues related to crosstalk noise in static CMOS designs and presents a practical approach to full-chip crosstalk noise verification. A grouping based method is described for identification of potential victims and associated aggressors, in the absence of timing information. Results from crosstalk verification of a large DSP design is presented.

[1]  P. Yang,et al.  Multilevel metal capacitance models for CAD design synthesis systems , 1992, IEEE Electron Device Letters.

[2]  Malgorzata Marek-Sadowska,et al.  Crosstalk reduction for VLSI , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  X. Tian,et al.  Advanced wiring RC delay issues for sub-0.25-micron generation CMOS , 1998, Proceedings of the IEEE 1998 International Interconnect Technology Conference (Cat. No.98EX102).

[4]  Jacob K. White,et al.  FastCap: a multipole accelerated 3-D capacitance extraction program , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  Yao-Wen Chang,et al.  Noise-constrained performance optimization by simultaneous gate and wire sizing based on Lagrangian relaxation , 1999, DAC '99.

[6]  K. L. Shepard,et al.  Noise in deep submicron digital design , 1996, ICCAD 1996.

[7]  Takayasu Sakurai,et al.  Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSIs , 1993 .

[8]  L. Gal,et al.  On-chip cross talk-the new signal integrity challenge , 1995, Proceedings of the IEEE 1995 Custom Integrated Circuits Conference.

[9]  M. Bohr Interconnect scaling-the real limiter to high performance ULSI , 1995, Proceedings of International Electron Devices Meeting.

[10]  Alberto Sangiovanni-Vincentelli,et al.  Digital sensitivity: predicting signal interaction using functional analysis , 1996, ICCAD 1996.

[11]  J. F. MacDonald A D&T Roundtable Deep-Submicron Noise , 1998 .

[12]  C. L. Liu,et al.  Crosstalk minimization using wire perturbations , 1999, DAC '99.

[13]  I. Elfadel,et al.  A block rational Arnoldi algorithm for multipoint passive model-order reduction of multiport RLC networks , 1997, ICCAD 1997.

[14]  C. Kyung,et al.  Reducing cross-coupling among interconnect wires in deep-submicron datapath design , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[15]  R. B. Iverson,et al.  A stochastic algorithm for high speed capacitance extraction in integrated circuits , 1992 .

[16]  Lawrence T. Pileggi,et al.  PRIMA: passive reduced-order interconnect macromodeling algorithm , 1997, ICCAD 1997.

[17]  Nagaraj Ns,et al.  Chip-level verification for parasitic coupling effects in deep-submicron digital designs , 1999, DATE '99.

[18]  T. Sakurai,et al.  Simple formulas for two- and three-dimensional capacitances , 1983, IEEE Transactions on Electron Devices.

[19]  Jacob K. White,et al.  FastCap: A Multipole Accelerated 3-D Extraction Program , 1991 .

[20]  Roland W. Freund,et al.  Reduced-Order Modeling of Large Linear Subcircuits via a Block Lanczos Algorithm , 1995, 32nd Design Automation Conference.