FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome

[1]  J. Mossong,et al.  Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis , 2007, International journal of cancer.

[2]  S. Baker PTEN Enters the Nuclear Age , 2007, Cell.

[3]  Jianfeng Xu,et al.  Comprehensive assessment of DNA copy number alterations in human prostate cancers using Affymetrix 100K SNP mapping array , 2006, Genes, chromosomes & cancer.

[4]  R. Henrique,et al.  TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. , 2006, Neoplasia.

[5]  R. Lothe,et al.  Comparison of chromosomal and array-based comparative genomic hybridization for the detection of genomic imbalances in primary prostate carcinomas , 2006, Molecular Cancer.

[6]  Paulo A. S. Nuin,et al.  Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68% of primary prostate cancer and 23% of high-grade prostatic intra-epithelial neoplasias. , 2006, Cancer genetics and cytogenetics.

[7]  Michael Ittmann,et al.  Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. , 2006, Cancer research.

[8]  J. Tchinda,et al.  TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. , 2006, Cancer research.

[9]  I. Panagopoulos,et al.  Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer. , 2006, Genes, chromosomes & cancer.

[10]  M. Gleave,et al.  Loss of PTEN is associated with progression to androgen independence , 2006, The Prostate.

[11]  A. Evans,et al.  Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. , 2006, Neoplasia.

[12]  R. Siebert,et al.  FISH analysis for the detection of lymphoma-associated chromosomal abnormalities in routine paraffin-embedded tissue. , 2006, The Journal of molecular diagnostics : JMD.

[13]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[14]  H. Stoop,et al.  The PTEN gene in locally progressive prostate cancer is preferentially inactivated by bi‐allelic gene deletion , 2006, The Journal of pathology.

[15]  Arul M Chinnaiyan,et al.  TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. , 2006, Cancer research.

[16]  A. Evans,et al.  The use of whole genome amplification to study chromosomal changes in prostate cancer: insights into genome-wide signature of preneoplasia associated with cancer progression , 2006, BMC Genomics.

[17]  A. Jemal,et al.  Cancer Statistics, 2006 , 2006, CA: a cancer journal for clinicians.

[18]  R. Lothe,et al.  Statistical dissection of genetic pathways involved in prostate carcinogenesis , 2006, Genes, chromosomes & cancer.

[19]  C. Ahlers,et al.  ETS-TMPRSS2 fusion gene products in prostate cancer , 2006, Cancer biology & therapy.

[20]  J. Tchinda,et al.  Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer , 2005, Science.

[21]  A. Korshunov,et al.  Clinical utility of fluorescence in situ hybridization (FISH) in nonbrainstem glioblastomas of childhood , 2005, Modern Pathology.

[22]  K. H. Gulkesen,et al.  The assessment of PTEN tumor suppressor gene in combination with Gleason scoring and serum PSA to evaluate progression of prostate carcinoma. , 2004, Urologic oncology.

[23]  T. Golub,et al.  mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways , 2004, Nature Medicine.

[24]  Y. Sakurai,et al.  Abnormalities in chromosome 17 and p53 in lung carcinoma cells detected by fluorescence in situ hybridization , 2004, Pathology international.

[25]  Yidong Chen,et al.  High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. , 2004, Neoplasia.

[26]  W. Gerald,et al.  Gene expression profiling predicts clinical outcome of prostate cancer. , 2004, The Journal of clinical investigation.

[27]  D. Pinkel,et al.  Evaluation of genetic patterns in different tumor areas of intermediate‐grade prostatic adenocarcinomas by high‐resolution genomic array analysis , 2004, Genes, chromosomes & cancer.

[28]  T. Visakorpi,et al.  Molecular genetics of prostate cancer. , 2003, Annals of medicine.

[29]  D. Goberdhan,et al.  PTEN: tumour suppressor, multifunctional growth regulator and more. , 2003, Human molecular genetics.

[30]  W. Isaacs,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group. Pathological and Molecular Aspects of Prostate Cancer Prostate Cancer Ii , 2022 .

[31]  T. Shuin,et al.  Detection of genetic alterations in advanced prostate cancer by comparative genomic hybridization. , 2002, Cancer genetics and cytogenetics.

[32]  D. Woods,et al.  Phosphorylation of HDM2 by Akt , 2002, Oncogene.

[33]  M. Ittmann,et al.  Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  H. Höfler,et al.  Chromosomal changes during development and progression of prostate adenocarcinomas , 2001, British Journal of Cancer.

[35]  O. Myklebost,et al.  Characterization of centromere alterations in liposarcomas , 2000, Genes, chromosomes & cancer.

[36]  M. Skolnick,et al.  Microdissection, DOP-PCR, and comparative genomic hybridization of paraffin-embedded familial prostate cancers. , 2000, Cancer genetics and cytogenetics.

[37]  R. Vessella,et al.  Increased AKT Activity Contributes to Prostate Cancer Progression by Dramatically Accelerating Prostate Tumor Growth and Diminishing p27Kip1 Expression* , 2000, The Journal of Biological Chemistry.

[38]  M. Loda,et al.  Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. , 1999, Cancer research.

[39]  V. Yong,et al.  PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis. , 1999, European journal of biochemistry.

[40]  C. Bartoli,et al.  c-erbB2/neu gene and chromosome 17 analysis in breast cancer by FISH on archival cytological fine-needle aspirates , 1999, British Journal of Cancer.

[41]  M. Greenberg,et al.  Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor , 1999, Cell.

[42]  John Calvin Reed,et al.  Regulation of cell death protease caspase-9 by phosphorylation. , 1998, Science.

[43]  D. Bostwick,et al.  Determination of gene and chromosome dosage in prostatic intraepithelial neoplasia and carcinoma. , 1998, Analytical and quantitative cytology and histology.

[44]  R. Vessella,et al.  Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Kucherlapati,et al.  Identification of new translocation breakpoints at 12q13 in lipomas. , 1997, Genomics.

[46]  S. R. Datta,et al.  Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery , 1997, Cell.

[47]  Jorma Isola,et al.  In vivo amplification of the androgen receptor gene and progression of human prostate cancer , 1995, Nature Genetics.

[48]  Y. Oshika,et al.  P-glycoprotein-mediated acquired multidrug resistance of human lung cancer cells in vivo. , 1996, British Journal of Cancer.

[49]  K. Marumo,et al.  Inhibition of Wnt signaling downregulates Akt activity and induces chemosensitivity in PTEN‐mutated prostate cancer cells , 2005, The Prostate.

[50]  G. Miller,et al.  Prostate cancer: serum and tissue markers. , 2001, Reviews in urology.

[51]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.