Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

[1]  S. O. Degertekin Optimum design of steel frames using harmony search algorithm , 2008 .

[2]  W. F. Chen,et al.  Practical Second‐Order Inelastic Analysis of Semirigid Frames , 1994 .

[3]  S. O. Degertekin Harmony search algorithm for optimum design of steel frame structures: A comparative study with other optimization methods , 2008 .

[4]  V. Marimuthu,et al.  An improved polynomial model for top -and seat- angle connection , 2008 .

[5]  Luis Simões,et al.  Optimization of frames with semi-rigid connections , 1996 .

[6]  Wai-Fah Chen,et al.  Analysis and behaviour of flexibly-jointed frames , 1986 .

[7]  Amir Saedi Daryan,et al.  Moment–rotation behavior of bolted top–seat angle connections , 2009 .

[8]  Tae-Sup Moon,et al.  Momentrotation model of semi-rigid connections with angles , 2002 .

[9]  K. Lee,et al.  The harmony search heuristic algorithm for discrete structural optimization , 2005 .

[10]  Mehmet Polat Saka,et al.  Optimum design of nonlinear steel frames with semi-rigid connections using a genetic algorithm , 2001 .

[11]  Balaur S. Dhillon,et al.  Interactive Design of Semirigid Steel Frames , 1999 .

[12]  Miodrag Sekulovic,et al.  Nonlinear analysis of frames with flexible connections , 2001 .

[13]  Donald E. Grierson,et al.  COMPUTER-AUTOMATED DESIGN OF SEMIRIGID STEEL FRAMEWORKS , 1993 .

[14]  Ali Kaveh,et al.  Analysis of frames with semi-rigid joints: A graph-theoretical approach , 2006 .

[15]  David A. Nethercot,et al.  Effect of semi-rigid connections on steel column strength , 1980 .

[16]  Mehmet Polat Saka,et al.  Genetic algorithm based optimum design of nonlinear planar steel frames with various semi- rigid connections , 2003 .

[17]  Messaoud Saidani,et al.  Mechanical model for the analysis of steel frames with semi rigid joints , 2009 .

[18]  Anikó Csébfalvi Optimal design of frame structures with semi-rigid joints , 2007 .

[19]  W. F. Chen,et al.  Closure of "Effective Length Factor of Columns in Semirigid and Unbraced Frames" , 1997 .

[20]  S. O. Degertekin,et al.  Design of non-linear steel frames for stress and displacement constraints with semi-rigid connections via genetic optimization , 2004 .

[21]  N. Kishi,et al.  Semirigid Steel Beam‐to‐Column Connections: Data Base and Modeling , 1989 .

[22]  K. M. Abdalla,et al.  Expanded database of semi-rigid steel connections , 1995 .

[23]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[24]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[25]  S. O. Degertekin,et al.  Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization , 2005 .

[26]  Wai-Fah Chen,et al.  A design model for semi-rigid connections , 1990 .

[27]  N. Kishi,et al.  Moment‐Rotation Relations of Semirigid Connections with Angles , 1990 .

[28]  Mehmet Polat Saka,et al.  Optimum design of steel sway frames to BS5950 using harmony search algorithm , 2009 .

[29]  Robert E. Melchers,et al.  Moment‐Rotation Curves for Bolted Connections , 1986 .

[30]  W. S. King The limit loads of steel semi-rigid frames analyzed with different methods , 1994 .

[31]  S. O. Degertekin,et al.  Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections , 2004 .

[32]  M. John Frye,et al.  Analysis of Flexibly Connected Steel Frames , 1975 .

[33]  Tarek H. Almusallam,et al.  Optimality and safety of rigidly- and flexibly-jointed steel frames , 1995 .

[34]  Miklós Iványi Full-scale tests of steel frames with semi-rigid connections , 2000 .