Viscous extension of potential-flow unsteady aerodynamics: the lift frequency response problem

The application of the Kutta condition to unsteady flows has been controversial over the years, with increased research activities over the 1970s and 1980s. This dissatisfaction with the Kutta condition has been recently rejuvenated with the increased interest in low-Reynolds-number, high-frequency bio-inspired flight. However, there is no convincing alternative to the Kutta condition, even though it is not mathematically derived. Realizing that the lift generation and vorticity production are essentially viscous processes, we provide a viscous extension of the classical theory of unsteady aerodynamics by relaxing the Kutta condition. We introduce a trailing-edge singularity term in the pressure distribution and determine its strength by using the triple-deck viscous boundary layer theory. Based on the extended theory, we develop (for the first time) a theoretical viscous (Reynolds-number-dependent) extension of the Theodorsen lift frequency response function. It is found that viscosity induces more phase lag to the Theodorsen function particularly at high frequencies and low Reynolds numbers. The obtained theoretical results are validated against numerical laminar simulations of Navier–Stokes equations over a sinusoidally pitching NACA 0012 at low Reynolds numbers and using Reynolds-averaged Navier–Stokes equations at relatively high Reynolds numbers. The physics behind the observed viscosity-induced lag is discussed in relation to wake viscous damping, circulation development and the Kutta condition. Also, the viscous contribution to the lift is shown to significantly decrease the virtual mass, particularly at high frequencies and Reynolds numbers.

[1]  Haithem E. Taha,et al.  A variational approach for the dynamics of unsteady point vortices , 2018, Aerospace Science and Technology.

[2]  Haithem E. Taha,et al.  A Variational Approach for the Dynamics of Unsteady Point Vortices with Application to Impulsively Started Aerofoil , 2018, 2018 Applied Aerodynamics Conference.

[3]  R. Canfield,et al.  Unsteady Aerodynamic Stabilization of the Dynamics of Hingeless Rotor Blades in Hover , 2017 .

[4]  Muhammad R. Hajj,et al.  Measurement and modeling of lift enhancement on plunging airfoils: A frequency response approach , 2017 .

[5]  A. Rezaei,et al.  Computational Study of Lift Frequency Responses of Pitching Airfoils at Low Reynolds Numbers , 2017 .

[6]  K. Mohseni,et al.  Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil , 2016, Journal of Fluid Mechanics.

[7]  M. Hajj,et al.  Experimental analysis of energy harvesting from self-induced flutter of a composite beam , 2015 .

[8]  Juan Li,et al.  Unsteady lift for the Wagner problem in the presence of additional leading/trailing edge vortices , 2015, Journal of Fluid Mechanics.

[9]  Muhammad R. Hajj,et al.  Geometrically-exact unsteady model for airfoils undergoing large amplitude maneuvers , 2014 .

[10]  J. Edwards,et al.  Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding , 2014, Journal of Fluid Mechanics.

[11]  Muhammad R. Hajj,et al.  State-space representation of the unsteady aerodynamics of flapping flight , 2014 .

[12]  Jeff D. Eldredge,et al.  Low-order phenomenological modeling of leading-edge vortex formation , 2013 .

[13]  H. Babinsky,et al.  Lift and the leading-edge vortex , 2013, Journal of Fluid Mechanics.

[14]  J. Edwards,et al.  An unsteady airfoil theory applied to pitching motions validated against experiment and computation , 2013 .

[15]  Maziar S. Hemati,et al.  Improving vortex models via optimal control theory , 2012 .

[16]  J. Eldredge,et al.  Low-order phenomenological modeling of leading-edge vortex formation , 2012, Theoretical and Computational Fluid Dynamics.

[17]  Anthony Leonard,et al.  A discrete-vortex model for the arbitrary motion of a thin airfoil with fluidic control , 2011 .

[18]  L. Mahadevan,et al.  A generalized theory of viscous and inviscid flutter , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Sébastien Michelin,et al.  An unsteady point vortex method for coupled fluid–solid problems , 2009 .

[20]  Silas Alben,et al.  The flapping-flag instability as a nonlinear eigenvalue problem , 2008 .

[21]  D. Peters Two-dimensional incompressible unsteady airfoil theory—An overview , 2008 .

[22]  Qian Ding,et al.  The flutter of an airfoil with cubic structural and aerodynamic non-linearities , 2006 .

[23]  Kevin Knowles,et al.  Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 2: Implementation and validation , 2006 .

[24]  Kevin Knowles,et al.  Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 1: Methodology and analysis , 2006 .

[25]  Z. J. Wang,et al.  Unsteady forces on an accelerating plate and application to hovering insect flight , 2004, Journal of Fluid Mechanics.

[26]  Marvin A. Jones The separated flow of an inviscid fluid around a moving flat plate , 2003, Journal of Fluid Mechanics.

[27]  Yu Yongliang,et al.  An analytic approach to theoretical modeling of highly unsteady viscous flow excited by wing flapping in small insects , 2003 .

[28]  Liviu Librescu,et al.  Implications of cubic physical/aerodynamic non-linearities on the character of the flutter instability boundary , 2003 .

[29]  L. Graftieaux,et al.  Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows , 2001 .

[30]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[31]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[32]  A. F. Messiter,et al.  Boundary-Layer Interaction Theory , 1983 .

[33]  F. Smith Interacting flow theory and trailing edge separation – no stall , 1983, Journal of Fluid Mechanics.

[34]  J. F. Unruh,et al.  Correlation of lift and boundary-layer activity on an oscillating lifting surface , 1982 .

[35]  S. Brown,et al.  Correlated unsteady and steady laminar trailing-edge flows , 1981, Journal of Fluid Mechanics.

[36]  Keith Stewartson D’Alembert’s Paradox , 1981 .

[37]  B. G. Newman,et al.  The Role of Vortices and Unsteady Effects During the Hovering Flight of Dragonflies , 1979 .

[38]  G. Hancock,et al.  The unsteady motion of a two-dimensional aerofoil in incompressible inviscid flow , 1978, Journal of Fluid Mechanics.

[39]  Sanford S. Davis,et al.  Experimental Studies of Unsteady Trailing-Edge Conditions , 1978 .

[40]  P. G. Daniels,et al.  ON THE UNSTEADY KUTTA CONDITION , 1978 .

[41]  W. Sears Unsteady motion of airfoils with boundary-layer separation , 1976 .

[42]  P. Daniels,et al.  On the viscous flow about the trailing edge of a rapidly oscillating plate , 1975, Journal of Fluid Mechanics.

[43]  O. Burggraf,et al.  The numerical solution of the asymptotic equations of trailing edge flow , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[44]  K. Stewartson,et al.  Trailing-edge stall , 1970, Journal of Fluid Mechanics.

[45]  K. Stewartson On the flow near the trailing edge of a flat plate , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  P. Pedley,et al.  An Introduction to Fluid Dynamics , 1968 .

[47]  H. Norman Abramson,et al.  HYDROELASTICITY WITH SPECIAL REFERENCE TO HYDROFOIL CRAFT. , 1967 .

[48]  M. R. Ali,et al.  HYDROFOIL FLUTTER PHENOMENON AND AIRFOIL FLUTTER THEORY. VOLUME III. SWEEP AND TAPER. , 1965 .

[49]  S. Shen,et al.  The theory for an oscillating thin airfoil as derived from the Oseen equations , 1965, Journal of Fluid Mechanics.

[50]  H. N. Abramson,et al.  An experimental investigation of flutter of a fully submerged subcavitating hydrofoil , 1964 .

[51]  W. Chu An Aerodynamic Analysis for Flutter in Oseen-Type Viscous Flow , 1962 .

[52]  H. Norman Abramson,et al.  An Alternative Formulation of the Problem of Flutter in Real Fluids , 1959 .

[53]  Wen-Hwa Chu,et al.  A Discussion of the Flutter of Submerged Hydrofoils , 1959 .

[54]  R. Loewy A Two-Dimensional Approximation to the Unsteady Aerodynamics of Rotary Wings , 1957 .

[55]  W. Sears Some Recent Developments in Airfoil Theory , 1956 .

[56]  N. Rott Diffraction of a weak shock with vortex generation , 1956, Journal of Fluid Mechanics.

[57]  D. A. Spence,et al.  Prediction of the Characteristics of Two-Dimensional Airfoils , 1954 .

[58]  M. Lighthill,et al.  On boundary layers and upstream influence II. Supersonic flows without separation , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[59]  D. S. Woolston,et al.  Some effects of variations in several parameters including fluid density on the flutter speed of light uniform cantilever wings , 1951 .

[60]  N. N. Bogoliubov,et al.  Introduction to Non-Linear Mechanics. (AM-11) , 1950 .

[61]  S. Goldstein,et al.  Modern developments in fluid dynamics : an account of theory and experiment relating to boundary layers, turbulent motion and wakes , 1939, The Journal of the Royal Aeronautical Society.

[62]  T. Kármán,et al.  Airfoil Theory for Non-Uniform Motion , 1938 .

[63]  I. E. Garrick On some reciprocal relations in the theory of nonstationary flows , 1938 .

[64]  I. E. Garrick Propulsion of a flapping and oscillating airfoil , 1936 .

[65]  L. Howarth The Theoretical Determination of the Lift Coefficient for a Thin Elliptic Cylinder , 1935 .

[66]  T. Theodorsen General Theory of Aerodynamic Instability and the Mechanism of Flutter , 1934 .

[67]  S. Goldstein,et al.  Concerning some Solutions of the Boundary Layer Equations in Hydrodynamics , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[68]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[69]  V. Constantinescu Slow Viscous Flow , 1995 .

[70]  D. Wilcox Turbulence modeling for CFD , 1993 .

[71]  Brian G. Miller,et al.  Aerosol inhalability at higher windspeeds , 1990 .

[72]  D. Crighton The Kutta Condition in Unsteady Flow , 1985 .

[73]  Hermann Schlichting,et al.  Aerodynamics of the airplane , 1979 .

[74]  R. Melnik,et al.  Numerical solutions of the triple-deck equations for laminar trailing-edge stall. [of thin wings in subsonic flow , 1976 .

[75]  A. Veldman,et al.  Drag of a finite flat plate , 1975 .

[76]  K. Stewartson Multistructured Boundary Layers on Flat Plates and Related Bodies , 1974 .

[77]  Steven A. Orszag,et al.  Instability of a Vortex Sheet Leaving a Semi-Infinite Plate , 1970 .

[78]  A. Messiter Boundary-Layer Flow Near the Trailing Edge of a Flat Plate , 1970 .

[79]  Katsuhiko Ogata Modern Control Engineering , 1970 .

[80]  G. Birkhoff,et al.  Helmholtz and taylor instability , 1962 .

[81]  Walter Tollmien,et al.  Gesammelte Abhandlungen zur angewandten Mechanik, Hydro- und Aerodynamik , 1961 .

[82]  Johannes Weissinger,et al.  Über eine Erweiterung der Prandtlschen Theorie der tragenden Linie , 1949 .

[83]  N. N. Bogoli︠u︡bov,et al.  Introduction to non-linear mechanics , 1943 .

[84]  D. M. Rid,et al.  MINISTRY OF SUPPLY , 1942 .

[85]  H. Glauert The elements of aerofoil and airscrew theory , 1926 .

[86]  Herbert Wagner Über die Entstehung des dynamischen Auftriebes von Tragflügeln , 1925 .

[87]  L. Prandtl,et al.  Über die Entstehung von Wirbeln in der idealen Flüssigkeit, mit Anwendung auf die Tragflügeltheorie und andere Aufgaben , 1924 .

[88]  W. Birnbaum Die tragende Wirbelfläche als Hilfsmittel zur Behandlung des ebenen Problems der Tragflügeltheorie , 1923 .

[89]  H. Blasius Grenzschichten in Flüssigkeiten mit kleiner Reibung , 1907 .