Probabilistic and deterministic algorithms for space multidimensional irregular porous media equation

The object of this paper is a multi-dimensional generalized porous media equation (PDE) with not smooth and possibly discontinuous coefficient $$\beta $$, which is well-posed as an evolution problem in $$L^1(\mathbb R ^d)$$. This work continues the study related to the one-dimensional case by the same authors. One expects that a solution of the mentioned PDE can be represented through the solution (in law) of a non-linear stochastic differential equation (NLSDE). A classical tool for doing this is a uniqueness argument for some Fokker–Planck type equations with measurable coefficients. When $$\beta $$ is possibly discontinuous, this is often possible in dimension $$d = 1$$. If $$d > 1$$, this problem is more complex than for $$d = 1$$. However, it is possible to exhibit natural candidates for the probabilistic representation and to use them for approximating the solution of (PDE) through a stochastic particle algorithm. We compare it with some numerical deterministic techniques that we have implemented adapting the method of a paper of Cavalli et al. whose convergence was established when $$\beta $$ is Lipschitz. Special emphasis is also devoted to the case when the initial condition is radially symmetric. On the other hand assuming that $$\beta $$ is continuous (even though not smooth), one provides existence results for a mollified version of the NLSDE and a related partial integro-differential equation, even if the initial condition is a general probability measure.

[1]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[2]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[3]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[4]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[5]  J. Vázquez The Porous Medium Equation , 2006 .

[6]  Jackson B. Lackey,et al.  Errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1964) by Milton Abramowitz and Irene A. Stegun , 1977 .

[7]  R. J. Elliott,et al.  CONTROLLED DIFFUSION PROCESSES (Applications of Mathematics, 14) , 1981 .

[8]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[9]  Philippe Blanchard,et al.  Self-organized criticality via stochastic partial differential equations , 2008, 0811.2093.

[10]  Aurélien Alfonsi,et al.  On the discretization schemes for the CIR (and Bessel squared) processes , 2005, Monte Carlo Methods Appl..

[11]  Viorel Barbu,et al.  Nonlinear Differential Equations of Monotone Types in Banach Spaces , 2010 .

[12]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[13]  F. Russo,et al.  Uniqueness for Fokker-Planck equations with measurable coefficients and applications to the fast diffusion equation , 2012 .

[14]  Benjamin Jourdain,et al.  Propagation of chaos and fluctuations for a moderate model with smooth initial data , 1998 .

[15]  V. Barbu,et al.  A stochastic Fokker-Planck equation and double probabilistic representation for the stochastic porous media type equation. , 2014, 1404.5120.

[16]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[17]  F. Delbaen,et al.  Convergence of discretized stochastic (interest rate) processes with stochastic drift term , 1998 .

[18]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[19]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[20]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[21]  V. Barbu,et al.  Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case , 2008, 0805.2383.

[22]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[23]  A. Sznitman Topics in propagation of chaos , 1991 .

[24]  Viorel Barbu,et al.  Analysis and control of nonlinear infinite dimensional systems , 1993 .

[25]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[26]  Processus associés à l'équation des milieux poreux , 1996 .

[27]  Avalanche dynamics from anomalous diffusion. , 1992, Physical review letters.

[28]  A. Diop Sur la discrétisation et le comportement à petit bruit d'EDS unidimensionnelles dont les coefficients sont à dérivées singulières , 2003 .

[29]  Alessio Figalli,et al.  Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients , 2008 .

[30]  N. Krylov Controlled Diffusion Processes , 1980 .

[31]  Michael Röckner,et al.  Stochastic Porous Media Equations and Self-Organized Criticality , 2008, 0801.2478.

[32]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[33]  Francesco Russo,et al.  A probabilistic algorithm approximating solutions of a singular PDE of porous media type , 2010, Monte Carlo Methods Appl..

[34]  Probabilistic representation for solutions of an irregular porous media type equation. , 2008 .

[35]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[36]  F. Russo,et al.  About Fokker-Planck equation with measurable coefficients and applications to the fast diffusion equation , 2011, 1111.6458.

[37]  H. Alt Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .

[38]  Gabriella Puppo,et al.  High-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems , 2006, SIAM J. Numer. Anal..

[39]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[40]  J. Vázquez,et al.  Smoothing and decay estimates for nonlinear diffusion equations : equations of porous medium type , 2006 .

[41]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .