Probabilistic and deterministic algorithms for space multidimensional irregular porous media equation
暂无分享,去创建一个
[1] Bernard W. Silverman,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[2] Susan A. Murphy,et al. Monographs on statistics and applied probability , 1990 .
[3] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[4] D. Turcotte,et al. Self-organized criticality , 1999 .
[5] J. Vázquez. The Porous Medium Equation , 2006 .
[6] Jackson B. Lackey,et al. Errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., 1964) by Milton Abramowitz and Irene A. Stegun , 1977 .
[7] R. J. Elliott,et al. CONTROLLED DIFFUSION PROCESSES (Applications of Mathematics, 14) , 1981 .
[8] David M. Miller,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[9] Philippe Blanchard,et al. Self-organized criticality via stochastic partial differential equations , 2008, 0811.2093.
[10] Aurélien Alfonsi,et al. On the discretization schemes for the CIR (and Bessel squared) processes , 2005, Monte Carlo Methods Appl..
[11] Viorel Barbu,et al. Nonlinear Differential Equations of Monotone Types in Banach Spaces , 2010 .
[12] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[13] F. Russo,et al. Uniqueness for Fokker-Planck equations with measurable coefficients and applications to the fast diffusion equation , 2012 .
[14] Benjamin Jourdain,et al. Propagation of chaos and fluctuations for a moderate model with smooth initial data , 1998 .
[15] V. Barbu,et al. A stochastic Fokker-Planck equation and double probabilistic representation for the stochastic porous media type equation. , 2014, 1404.5120.
[16] M. C. Jones,et al. A reliable data-based bandwidth selection method for kernel density estimation , 1991 .
[17] F. Delbaen,et al. Convergence of discretized stochastic (interest rate) processes with stochastic drift term , 1998 .
[18] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[19] David M. Raup,et al. How Nature Works: The Science of Self-Organized Criticality , 1997 .
[20] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[21] V. Barbu,et al. Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case , 2008, 0805.2383.
[22] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[23] A. Sznitman. Topics in propagation of chaos , 1991 .
[24] Viorel Barbu,et al. Analysis and control of nonlinear infinite dimensional systems , 1993 .
[25] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[26] Processus associés à l'équation des milieux poreux , 1996 .
[27] Avalanche dynamics from anomalous diffusion. , 1992, Physical review letters.
[28] A. Diop. Sur la discrétisation et le comportement à petit bruit d'EDS unidimensionnelles dont les coefficients sont à dérivées singulières , 2003 .
[29] Alessio Figalli,et al. Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients , 2008 .
[30] N. Krylov. Controlled Diffusion Processes , 1980 .
[31] Michael Röckner,et al. Stochastic Porous Media Equations and Self-Organized Criticality , 2008, 0801.2478.
[32] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[33] Francesco Russo,et al. A probabilistic algorithm approximating solutions of a singular PDE of porous media type , 2010, Monte Carlo Methods Appl..
[34] Probabilistic representation for solutions of an irregular porous media type equation. , 2008 .
[35] Lorenzo Pareschi,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.
[36] F. Russo,et al. About Fokker-Planck equation with measurable coefficients and applications to the fast diffusion equation , 2011, 1111.6458.
[37] H. Alt. Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .
[38] Gabriella Puppo,et al. High-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems , 2006, SIAM J. Numer. Anal..
[39] D. W. Stroock,et al. Multidimensional Diffusion Processes , 1979 .
[40] J. Vázquez,et al. Smoothing and decay estimates for nonlinear diffusion equations : equations of porous medium type , 2006 .
[41] R. Showalter. Monotone operators in Banach space and nonlinear partial differential equations , 1996 .