Bayesian model updating of nonlinear systems using nonlinear normal modes

This paper presents a Bayesian model updating methodology for dynamical systems with geometric nonlinearities based on their nonlinear normal modes (NNMs) extracted from broadband vibration data. Model parameters are calibrated by minimizing selected metrics between identified and model-predicted NNMs. In a first approach, a deterministic formulation is adopted, and parameters are updated by minimizing a nonlinear least-squares objective function. A probabilistic approach based on Bayesian inference is next investigated, where a Transitional Markov Chain Monte Carlo is implemented to sample the joint posterior probability distribution of the nonlinear model parameters. Bayesian model calibration has the advantage to quantify parameter uncertainty and to provide an estimation of model evidence for model class selection. The two formulations are evaluated when applied to a numerical cantilever beam with geometrical nonlinearity. The NNMs of the beam are derived from simulated broadband data through nonlinear subspace identification and numerical continuation. Accuracy of model updating results is studied with respect to the level of measurement noise, the number of available datasets, and modeling errors.

[1]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[2]  Simon A Neild,et al.  Robust identification of backbone curves using control-based continuation , 2016 .

[3]  James L. Beck,et al.  Structural damage detection and assessment by adaptive Markov chain Monte Carlo simulation , 2004 .

[4]  R. M. Rosenberg,et al.  The Normal Modes of Nonlinear n-Degree-of-Freedom Systems , 1962 .

[5]  Gaëtan Kerschen,et al.  Numerical computation of nonlinear normal modes in mechanical engineering , 2016 .

[6]  Gaëtan Kerschen,et al.  Modal testing of nonlinear vibrating structures based on nonlinear normal modes: Experimental demonstration , 2011 .

[7]  S. Alampalli,et al.  EFFECTS OF TESTING, ANALYSIS, DAMAGE, AND ENVIRONMENT ON MODAL PARAMETERS , 2000 .

[8]  Long Chen FINITE ELEMENT METHOD , 2013 .

[9]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[10]  Gaëtan Kerschen,et al.  Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques , 2009 .

[11]  Costas Papadimitriou,et al.  Probabilistic damage identification of a designed 9-story building using modal data in the presence of modeling errors , 2017 .

[12]  Costas Papadimitriou,et al.  Hierarchical Bayesian model updating for structural identification , 2015 .

[13]  Keegan J. Moore,et al.  Nonlinear model updating applied to the IMAC XXXII Round Robin benchmark system , 2017 .

[14]  Hoon Sohn,et al.  A Bayesian Probabilistic Approach for Structure Damage Detection , 1997 .

[15]  Reinhard Schmidt Updating non-linear components , 1994 .

[16]  R. M. Rosenberg,et al.  On Nonlinear Vibrations of Systems with Many Degrees of Freedom , 1966 .

[17]  Alexander F. Vakakis,et al.  NON-LINEAR NORMAL MODES (NNMs) AND THEIR APPLICATIONS IN VIBRATION THEORY: AN OVERVIEW , 1997 .

[18]  Remco I. Leine,et al.  Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation , 2017 .

[19]  James L. Beck,et al.  New Bayesian Model Updating Algorithm Applied to a Structural Health Monitoring Benchmark , 2004 .

[20]  P. G. Bakir,et al.  Damage identification on the Tilff bridge by vibration monitoring using optical fiber strain sensors , 2005 .

[21]  Keith Worden,et al.  IDENTIFICATION OF HYSTERETIC SYSTEMS USING THE DIFFERENTIAL EVOLUTION ALGORITHM , 2001 .

[22]  Christophe Pierre,et al.  Normal Modes for Non-Linear Vibratory Systems , 1993 .

[23]  Costas Papadimitriou,et al.  Bayesian Annealed Sequential Importance Sampling: An Unbiased Version of Transitional Markov Chain Monte Carlo , 2018 .

[24]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[25]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[26]  P. L. Green,et al.  Fast Bayesian identification of a class of elastic weakly nonlinear systems using backbone curves , 2016 .

[27]  Iason Papaioannou,et al.  Transitional Markov Chain Monte Carlo: Observations and Improvements , 2016 .

[28]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[29]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[30]  Jean-Philippe Noël,et al.  Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes , 2014, Nonlinear Dynamics.

[31]  G. Roeck,et al.  Structural damage identification of the highway bridge Z24 by FE model updating , 2004 .

[32]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[33]  Eleni Chatzi,et al.  Nonlinear model calibration of a shear wall building using time and frequency data features , 2017 .

[34]  Mehmet Kurt,et al.  Methodology for model updating of mechanical components with local nonlinearities , 2015 .

[35]  Andreas Stavridis,et al.  Nonlinear finite element model updating of an infilled frame based on identified time-varying modal parameters during an earthquake , 2014 .

[36]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[37]  Hoon Sohn,et al.  Statistical model updating and validation applied to nonlinear transient structural dynamics , 2000 .

[38]  Alexander F. Vakakis,et al.  Normal modes and localization in nonlinear systems , 1996 .

[39]  J. Ching,et al.  Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging , 2007 .

[40]  Fabrice Thouverez,et al.  Presentation of the ECL Benchmark , 2003 .

[41]  J. Schultze,et al.  Application of non-linear system model updating using feature extraction and parameter effects analysis , 2000 .

[42]  James L. Beck,et al.  Monitoring Structural Health Using a Probabilistic Measure , 2001 .

[43]  J. Beck Bayesian system identification based on probability logic , 2010 .

[44]  Joel P. Conte,et al.  Uncertainty Quantification in the Assessment of Progressive Damage in a 7-Story Full-Scale Building Slice , 2013 .

[45]  L. Renson,et al.  Identification of nonlinear normal modes of engineering structures under broadband forcing , 2016, 1604.08069.

[46]  Chiara Grappasonni,et al.  Subspace and Nonlinear-Normal-Modes-Based Identification of a Beam with Softening-Hardening Behaviour , 2014 .

[47]  Costas Papadimitriou,et al.  Bridge health monitoring system based on vibration measurements , 2008 .

[48]  Gaëtan Kerschen,et al.  Generation of Accurate Finite Element Models of Nonlinear Systems – Application to an Aeroplane-Like Structure , 2005 .

[49]  Alexander F. Vakakis,et al.  Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment , 2005 .

[50]  Michael Link,et al.  Modelling and updating of local non-linearities using frequency response residuals , 2003 .

[51]  F. Hemez,et al.  REVIEW AND ASSESSMENT OF MODEL UPDATING FOR NON-LINEAR, TRANSIENT DYNAMICS , 2001 .

[52]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[53]  Matthew S. Allen,et al.  Nonlinear normal modes modal interactions and isolated resonance curves , 2015, 1604.05567.

[54]  Pascal Reuss,et al.  Towards Finite Element Model Updating Based on Nonlinear Normal Modes , 2016 .

[55]  James M. W. Brownjohn,et al.  Dynamic Assessment of Curved Cable-Stayed Bridge by Model Updating , 2000 .

[56]  James L. Beck,et al.  Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation , 2008 .

[57]  Thomas H. Heaton,et al.  The Observed Wander of the Natural Frequencies in a Structure , 2006 .