Error propagation control in Laplacian mesh compression

Laplacian mesh compression, also known as high‐pass mesh coding, is a popular technique for efficiently storing both static and dynamic triangle meshes that gained further recognition with the advent of perceptual mesh distortion evaluation metrics. Currently, the usual rule of thumb that drives the decision for a mesh compression algorithm is whether or not accuracy in absolute scale is required: Laplacian mesh encoding is chosen when perceptual quality is the main objective, while other techniques provide better results in terms of mechanistic error measures such as mean squared error.

[1]  Guillaume Lavoué,et al.  A Multiscale Metric for 3D Mesh Visual Quality Assessment , 2011, Comput. Graph. Forum.

[2]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[3]  Libor Vása,et al.  Perceptual Metrics for Static and Dynamic Triangle Meshes , 2013, Eurographics.

[4]  Pierre Alliez,et al.  Valence‐Driven Connectivity Encoding for 3D Meshes , 2001, Comput. Graph. Forum.

[5]  Craig Gotsman On the Optimality of Valence‐based Connectivity Coding , 2003, Comput. Graph. Forum.

[6]  Jean-Marc Chassery,et al.  A Curvature-Tensor-Based Perceptual Quality Metric for 3D Triangular Meshes , 2012, Machine Graphics and Vision.

[7]  Konrad Polthier,et al.  FreeLence ‐ Coding with Free Valences , 2005, Comput. Graph. Forum.

[8]  Wojciech Matusik,et al.  Articulated mesh animation from multi-view silhouettes , 2008, ACM Trans. Graph..

[9]  Stefan Gumhold,et al.  Improved cut-border machine for triangle mesh compression , 1999 .

[10]  Rémy Prost,et al.  Wavelet-based progressive compression scheme for triangle meshes: wavemesh , 2004, IEEE Transactions on Visualization and Computer Graphics.

[11]  Craig Gotsman,et al.  Compression of soft-body animation sequences , 2004, Comput. Graph..

[12]  Craig A. Knoblock,et al.  A Survey of Digital Map Processing Techniques , 2014, ACM Comput. Surv..

[13]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[14]  Alec Jacobson,et al.  Thingi10K: A Dataset of 10, 000 3D-Printing Models , 2016, ArXiv.

[15]  Kai Wang,et al.  Perceptual quality assessment of 3D dynamic meshes: Subjective and objective studies , 2015, Signal Process. Image Commun..

[16]  Guillaume Lavoué,et al.  A local roughness measure for 3D meshes and its application to visual masking , 2009, TAP.

[17]  Igor Guskov,et al.  Extracting Animated Meshes with Adaptive Motion Estimation , 2004, VMV.

[18]  Libor Vása,et al.  Dihedral Angle Mesh Error: a fast perception correlated distortion measure for fixed connectivity triangle meshes , 2012, Comput. Graph. Forum.

[19]  Nancy Argüelles,et al.  Author ' s , 2008 .

[20]  Sang Uk Lee,et al.  An efficient 3D mesh compression technique based on triangle fan structure , 2003, Signal Process. Image Commun..

[21]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[22]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[23]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[24]  L. Vasa,et al.  CODDYAC: Connectivity Driven Dynamic Mesh Compression , 2007, 2007 3DTV Conference.

[25]  Václav Skala,et al.  A Perception Correlated Comparison Method for Dynamic Meshes , 2011, IEEE Transactions on Visualization and Computer Graphics.

[26]  Nadia Magnenat-Thalmann,et al.  Sparse Low-Rank Matrix Approximation for Data Compression , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[27]  Libor Vása,et al.  Optimising Perceived Distortion in Lossy Encoding of Dynamic Meshes , 2011, Comput. Graph. Forum.

[28]  Libor Vása,et al.  Compressing dynamic meshes with geometric laplacians , 2014, Comput. Graph. Forum.

[29]  L. Vasa,et al.  Exploiting Connectivity to Improve the Tangential Part of Geometry Prediction , 2013, IEEE Transactions on Visualization and Computer Graphics.

[30]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[31]  Céline Hudelot,et al.  3D Mesh Compression , 2015, ACM Comput. Surv..

[32]  Libor Vása,et al.  Hierarchical Laplacian-based compression of triangle meshes , 2014, Graph. Model..

[33]  Sivan Toledo,et al.  High-Pass Quantization for Mesh Encoding , 2003, Symposium on Geometry Processing.

[34]  Marc Alexa,et al.  Error diffusion on meshes , 2015, Comput. Graph..