Multiresolution MAP Despeckling of SAR Images Based on Locally Adaptive Generalized Gaussian pdf Modeling

In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori (MAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation

[1]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[2]  Johannes R. Sveinsson,et al.  Almost translation invariant wavelet transformations for speckle reduction of SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  Alejandro C. Frery,et al.  Models for Synthetic Aperture Radar Image Analysis , 1999 .

[4]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[5]  Luciano Alparone,et al.  Estimation based on entropy matching for generalized Gaussian PDF modeling , 1999, IEEE Signal Processing Letters.

[6]  Ridha Touzi,et al.  A review of speckle filtering in the context of estimation theory , 2002, IEEE Trans. Geosci. Remote. Sens..

[7]  Alexander A. Sawchuk,et al.  Adaptive restoration of images with speckle , 1987, IEEE Trans. Acoust. Speech Signal Process..

[8]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[10]  Eric Hervet,et al.  Comparison of wavelet-based and statistical speckle filters , 1998, Remote Sensing.

[11]  E. Nezry,et al.  Adaptive speckle filters and scene heterogeneity , 1990 .

[12]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[13]  Andrzej Cichocki,et al.  Flexible Independent Component Analysis , 2000, J. VLSI Signal Process..

[14]  H H Arsenault,et al.  Combined homomorphic and local-statistics processing for restoration of images degraded by signal-dependent noise. , 1984, Applied optics.

[15]  E. Nezry,et al.  Maximum A Posteriori Speckle Filtering And First Order Texture Models In Sar Images , 1990, 10th Annual International Symposium on Geoscience and Remote Sensing.

[16]  Luciano Alparone,et al.  Multiresolution local-statistics speckle filtering based on a ratio Laplacian pyramid , 1998, IEEE Trans. Geosci. Remote. Sens..

[17]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[19]  Martin Vetterli,et al.  Oversampled filter banks , 1998, IEEE Trans. Signal Process..

[20]  Kannan Ramchandran,et al.  Low-complexity image denoising based on statistical modeling of wavelet coefficients , 1999, IEEE Signal Processing Letters.

[21]  Jong-Sen Lee,et al.  Refined filtering of image noise using local statistics , 1981 .

[22]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[23]  Alin Achim,et al.  SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling , 2003, IEEE Trans. Geosci. Remote. Sens..

[24]  Andrea Baraldi,et al.  A refined gamma MAP SAR speckle filter with improved geometrical adaptivity , 1995, IEEE Trans. Geosci. Remote. Sens..

[25]  Fawwaz T. Ulaby,et al.  Statistical properties of logarithmically transformed speckle , 2002, IEEE Trans. Geosci. Remote. Sens..

[26]  T. Eltoft,et al.  λ-WMAP: a statistical speckle filter operating in the wavelet domain , 2004 .

[27]  Torbjørn Eltoft,et al.  Homomorphic wavelet-based statistical despeckling of SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Patrick Wambacq,et al.  Speckle filtering of synthetic aperture radar images : a review , 1994 .

[29]  Seisuke Fukuda,et al.  Smoothing effect of wavelet-based speckle filtering: the Haar basis case , 1999, IEEE Trans. Geosci. Remote. Sens..

[30]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Fabrizio Argenti,et al.  Speckle removal from SAR images in the undecimated wavelet domain , 2002, IEEE Trans. Geosci. Remote. Sens..

[32]  Corina da Costa Freitas,et al.  A model for extremely heterogeneous clutter , 1997, IEEE Trans. Geosci. Remote. Sens..

[33]  Jean-Marc Boucher,et al.  Multiscale MAP filtering of SAR images , 2001, IEEE Trans. Image Process..

[34]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[35]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..