Dynamic non-parametric joint sentiment topic mixture model

The reviews in social media are produced continuously by a large and uncontrolled number of users. To capture the mixture of sentiment and topics simultaneously in reviews is still a challenging task. In this paper, we present a novel probabilistic model framework based on the non-parametric hierarchical Dirichlet process (HDP) topic model, called non-parametric joint sentiment topic mixture model (NJST), which adds a sentiment level to the HDP topic model and detects sentiment and topics simultaneously from reviews. Then considered the dynamic nature of social media data, we propose dynamic NJST (dNJST) which adds time decay dependencies of historical epochs to the current epochs. Compared with the existing sentiment topic mixture models which are based on latent Dirichlet allocation (LDA), the biggest difference of NJST and dNJST is that they can determine topic number automatically. We implement NJST and dNJST with online variational inference algorithms, and incorporate the sentiment priors of words into NJST and dNJST with HowNet lexicon. The experiment results in some Chinese social media dataset show that dNJST can effectively detect and track dynamic sentiment and topics.

[1]  Ivan Titov,et al.  Modeling online reviews with multi-grain topic models , 2008, WWW.

[2]  Xueqi Cheng,et al.  Adaptive co-training SVM for sentiment classification on tweets , 2013, CIKM.

[3]  Paolo Rosso,et al.  On the difficulty of automatically detecting irony: beyond a simple case of negation , 2014, Knowledge and Information Systems.

[4]  George A. Vouros,et al.  Non-Parametric Estimation of Topic Hierarchies from Texts with Hierarchical Dirichlet Processes , 2011, J. Mach. Learn. Res..

[5]  ChengXiang Zhai,et al.  Generating comparative summaries of contradictory opinions in text , 2009, CIKM.

[6]  Yu Ge Analysis on Web Public Opinion Orientation Based on Extending Sentiment Lexicon , 2010 .

[7]  Thomas Hofmann,et al.  Probabilistic latent semantic indexing , 1999, SIGIR '99.

[8]  David B. Dunson,et al.  Probabilistic topic models , 2011, KDD '11 Tutorials.

[9]  Wang Xiaolong Sentiment Classification for Chinese News Using Machine Learning Methods , 2007 .

[10]  Xianghua Fu,et al.  Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexicon , 2013, Knowl. Based Syst..

[11]  Christopher C. Yang,et al.  TUT: a statistical model for detecting trends, topics and user interests in social media , 2012, CIKM.

[12]  Shlomo Argamon,et al.  Using appraisal groups for sentiment analysis , 2005, CIKM '05.

[13]  Swapna Somasundaran,et al.  Recognizing Stances in Ideological On-Line Debates , 2010, HLT-NAACL 2010.

[14]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[15]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[16]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[17]  Xiaohui Yan,et al.  A biterm topic model for short texts , 2013, WWW.

[18]  Xuanjing Huang,et al.  Phrase Dependency Parsing for Opinion Mining , 2009, EMNLP.

[19]  Andrew McCallum,et al.  Topics over time: a non-Markov continuous-time model of topical trends , 2006, KDD '06.

[20]  Songbo Tan,et al.  A survey on sentiment detection of reviews , 2009, Expert Syst. Appl..

[21]  Yue Lu,et al.  Latent aspect rating analysis on review text data: a rating regression approach , 2010, KDD.

[22]  Jie Tang,et al.  Mining topic-level opinion influence in microblog , 2012, CIKM.

[23]  Zheng Lin,et al.  Towards jointly extracting aspects and aspect-specific sentiment knowledge , 2012, CIKM.

[24]  Jong C. Park,et al.  Toward finer-grained sentiment identification in product reviews through linguistic and ontological analyses , 2009, ACL/IJCNLP.

[25]  Chong Wang,et al.  Online Variational Inference for the Hierarchical Dirichlet Process , 2011, AISTATS.

[26]  Xu Ling,et al.  Topic sentiment mixture: modeling facets and opinions in weblogs , 2007, WWW '07.

[27]  Hongfei Yan,et al.  Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid , 2010, EMNLP.

[28]  Wei Gao,et al.  Dynamic joint sentiment-topic model , 2013, ACM Trans. Intell. Syst. Technol..

[29]  Ee-Peng Lim,et al.  Finding Bursty Topics from Microblogs , 2012, ACL.

[30]  Wu Li-de,et al.  Semantic Orientation Computing Based on HowNet , 2006 .

[31]  Qiang Dong,et al.  HowNet and Its Computation of Meaning , 2010, COLING.

[32]  Johan Bollen,et al.  Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena , 2009, ICWSM.

[33]  Qiang Dong,et al.  Hownet And The Computation Of Meaning , 2006 .

[34]  Xiaoyan Zhu,et al.  Sentiment Analysis with Global Topics and Local Dependency , 2010, AAAI.

[35]  Yang Zhihao Text Orientation Identification Based on Semantic Comprehension , 2007 .

[36]  Chunyan Miao,et al.  Online multimodal deep similarity learning with application to image retrieval , 2013, ACM Multimedia.

[37]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[38]  Hu Yi,et al.  Research on Language Modeling Based Sentiment Classification of Text , 2007 .

[39]  Lei Yang,et al.  Dynamic Online HDP model for discovering evolutionary topics from Chinese social texts , 2016, Neurocomputing.

[40]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[41]  Cheng Xueqi,et al.  A New Method to Compute Semantic Orientation , 2009 .

[42]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[43]  Zhou Kai Topic Oriented Sentimental Feature Selection Method for News Comments , 2010 .

[44]  Rob Malouf,et al.  A Preliminary Investigation into Sentiment Analysis of Informal Political Discourse , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[45]  Yulan He,et al.  Joint sentiment/topic model for sentiment analysis , 2009, CIKM.

[46]  Paolo Rosso,et al.  A multidimensional approach for detecting irony in Twitter , 2013, Lang. Resour. Evaluation.

[47]  Xinying Xu,et al.  Hidden sentiment association in chinese web opinion mining , 2008, WWW.

[48]  Brendan T. O'Connor,et al.  From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series , 2010, ICWSM.

[49]  Ivan Titov,et al.  A Joint Model of Text and Aspect Ratings for Sentiment Summarization , 2008, ACL.

[50]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[51]  Hiroshi Nakagawa,et al.  Practical collapsed variational bayes inference for hierarchical dirichlet process , 2012, KDD.

[52]  Eric P. Xing,et al.  Timeline: A Dynamic Hierarchical Dirichlet Process Model for Recovering Birth/Death and Evolution of Topics in Text Stream , 2010, UAI.

[53]  Jianwen Zhang,et al.  Evolutionary hierarchical dirichlet processes for multiple correlated time-varying corpora , 2010, KDD.

[54]  Noriaki Kawamae,et al.  Trend analysis model: trend consists of temporal words, topics, and timestamps , 2011, WSDM '11.