E-generalization using grammars

We extend the notion of anti-unification to cover equational theories and present a method based on regular tree grammars to compute a finite representation of E-generalization sets. We present a framework to combine Inductive Logic Programming and E-generalization that includes an extension of Plotkin's lgg theorem to the equational case. We demonstrate the potential power of E-generalization by three example applications: computation of suggestions for auxiliary lemmas in equational inductive proofs, computation of construction laws for given term sequences, and learning of screen editor command sequences.

[1]  Saso Dzeroski,et al.  Inductive Logic Programming and Knowledge Discovery in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[2]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[3]  Rajesh Parekh,et al.  Grammar Inference Automata Induction and Language Acquisition , 2005 .

[4]  Ulrich Wagner Combinatorically Restricted Higher Order Anti-Unification. An Application to Programming by Analogy , 2002 .

[5]  Yasubumi Sakakibara,et al.  Recent Advances of Grammatical Inference , 1997, Theor. Comput. Sci..

[6]  Stephen Muggleton,et al.  Efficient Induction of Logic Programs , 1990, ALT.

[7]  Saso Dzeroski,et al.  Inductive Logic Programming: Techniques and Applications , 1993 .

[8]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[9]  Scott O'Hara,et al.  A Model of the "Redescription" Process in the Context of Geometric Proportional Analogy Problems , 1992, AII.

[10]  R. Scha,et al.  An algebraic method for solving proportional analogy problems involving sequential patterns , 1997 .

[11]  Loïc Pottier,et al.  Generalisation de termes en theorie equationnelle. Cas associatif-commutatif , 1989 .

[12]  Frank van Harmelen,et al.  Extensions to the Rippling-Out Tactic for Guiding Inductive Proofs , 1990, CADE.

[13]  Franz Baader Unification, Weak Unification, Upper Bound, Lower Bound, and Generalization Problems , 1991, RTA.

[14]  Birgit Heinz Anti-Unifikation modulo Gleichungstheorie und deren Anwendung zur Lemmagenerierung , 1996, GMD-Bericht.

[15]  Robert A. Kowalski,et al.  Predicate Logic as Programming Language , 1974, IFIP Congress.

[16]  Wayne Snyder,et al.  Complete Sets of Transformations for General E-Unification , 1989, Theor. Comput. Sci..

[17]  David A. McAllester Grammar Rewriting , 1991, CADE.

[18]  Sophie Tison,et al.  Equality and Disequality Constraints on Direct Subterms in Tree Automata , 1992, STACS.

[19]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[20]  Robert E. Tarjan,et al.  Variations on the Common Subexpression Problem , 1980, J. ACM.

[21]  Jan van Leeuwen,et al.  Handbook Of Theoretical Computer Science, Vol. A , 1990 .

[22]  Max Dauchet,et al.  Automata for Reduction Properties Solving , 1995, J. Symb. Comput..

[23]  Stephen Muggleton,et al.  Inductive Logic Programming: Issues, Results and the Challenge of Learning Language in Logic , 1999, Artif. Intell..

[24]  Tomás E. Uribe Sorted Unification Using Set Constraints , 1992, CADE.

[25]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[26]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[27]  Florent Jacquemard,et al.  Pumping, Cleaning and Symbolic Constraints Solving , 1994, ICALP.

[28]  Thomas G. Dietterich,et al.  A Comparative Review of Selected Methods for Learning from Examples , 1983 .

[29]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[30]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[31]  Robert S. Boyer,et al.  Computational Logic , 1990, ESPRIT Basic Research Series.

[32]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .

[33]  Jochen Burghardt Axiomatization of Finite Algebras , 2002, KI.

[34]  Jörg H. Siekmann,et al.  Universal Unification , 1982, GWAI.

[35]  Keith L. Clark Predicate logic as a computational formalism , 1979 .

[36]  Robert W. Hasker The replay of program derivations , 1995 .