Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions.

[1]  Oliver Lieleg,et al.  Selective filtering of particles by the extracellular matrix: an electrostatic bandpass. , 2009, Biophysical journal.

[2]  W. Deen,et al.  Effects of charge on osmotic reflection coefficients of macromolecules in fibrous membranes. , 2009, Biophysical journal.

[3]  Amran K. Asadi,et al.  pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding , 2009 .

[4]  Edward A. Sander,et al.  Image-based biomechanics of collagen-based tissue equivalents , 2009, IEEE Engineering in Medicine and Biology Magazine.

[5]  A. Verkman,et al.  Random-walk model of diffusion in three dimensions in brain extracellular space: comparison with microfiberoptic photobleaching measurements. , 2008, Biophysical journal.

[6]  C. Nicholson,et al.  In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate , 2008, Proceedings of the National Academy of Sciences.

[7]  K. Hamad-Schifferli,et al.  Evaluation of Hydrodynamic Size and Zeta-Potential of Surface-Modified Au Nanoparticle-DNA Conjugates via Ferguson Analysis , 2008 .

[8]  P. Sikorski,et al.  Physical and chemical modifications of collagen gels: Impact on diffusion , 2008, Biopolymers.

[9]  Moungi G Bawendi,et al.  Compact biocompatible quantum dots functionalized for cellular imaging. , 2008, Journal of the American Chemical Society.

[10]  A. Verkman,et al.  Enhanced macromolecule diffusion deep in tumors after enzymatic digestion of extracellular matrix collagen and its associated proteoglycan decorin , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[12]  D. M. Kroll,et al.  Three-dimensional modeling of the brain's ECS by minimum configurational energy packing of fluid vesicles. , 2007, Biophysical journal.

[13]  F. Guilak,et al.  Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. , 2006, Biophysical journal.

[14]  Vladimir P Torchilin,et al.  Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo , 2005, Nature Medicine.

[15]  William M. Deen,et al.  Diffusivities of macromolecules in composite hydrogels , 2004 .

[16]  Karel Segeth,et al.  A model of effective diffusion and tortuosity in the extracellular space of the brain. , 2004, Biophysical journal.

[17]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[18]  Marc Dellian,et al.  Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[19]  Brian Seed,et al.  Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation , 2003, Nature Medicine.

[20]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[21]  Vladimir P Torchilin,et al.  Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. , 2002, Cancer research.

[22]  Saroja Ramanujan,et al.  Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. , 2002, Biophysical journal.

[23]  R. B. Campbell,et al.  Role of tumor–host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Williams,et al.  An Exact Solution to the Electrostatic Interaction between an Ion-Penetrable Sphere and an Ion-Penetrable Rod. , 2000, Journal of colloid and interface science.

[25]  R. Jain,et al.  Role of extracellular matrix assembly in interstitial transport in solid tumors. , 2000, Cancer research.

[26]  R K Jain,et al.  Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. , 1999, Biophysical journal.

[27]  C. Dowd,et al.  Heparan Sulfate Mediates bFGF Transport through Basement Membrane by Diffusion with Rapid Reversible Binding* , 1999, The Journal of Biological Chemistry.

[28]  David S. Clague,et al.  Hindered diffusion of spherical macromolecules through dilute fibrous media , 1996 .

[29]  W. Deen,et al.  Electrostatic Effects on the Equilibrium Partitioning of Spherical Colloids in Random Fibrous Media , 1996 .

[30]  R K Jain,et al.  Hindered diffusion in agarose gels: test of effective medium model. , 1996, Biophysical journal.

[31]  R. Phillips Calculation of multisphere linearized Poisson-Boltzmann interactions near cylindrical fibers and planar surfaces , 1995 .

[32]  R K Jain,et al.  Fluorescence photobleaching with spatial Fourier analysis: measurement of diffusion in light-scattering media. , 1993, Biophysical journal.

[33]  J. Brady,et al.  Suspensions of prolate spheroids in Stokes flow. Part 2. Statistically homogeneous dispersions , 1993, Journal of Fluid Mechanics.

[34]  L. Johansson,et al.  Diffusion and interaction in gels and solutions. 4. Hard sphere Brownian dynamics simulations , 1993 .

[35]  J. Brady,et al.  Hindered transport in fibrous membranes and gels: Effect of solute size and fiber configuration , 1990 .

[36]  John F. Brady,et al.  Hindered transport of spherical macromolecules in fibrous membranes and gels , 1989 .

[37]  John F. Brady,et al.  Hydrodynamic transport properties of hard-sphere dispersions. II. Porous media , 1988 .

[38]  J. Brady,et al.  Hydrodynamic transport properties of hard-sphere dispersions. I. Suspensions of freely mobile particles , 1988 .

[39]  J. Brady,et al.  Dynamic simulation of hydrodynamically interacting suspensions , 1988, Journal of Fluid Mechanics.

[40]  R K Jain,et al.  Transport of molecules in the tumor interstitium: a review. , 1987, Cancer research.

[41]  C. Beenakker Ewald sum of the Rotne-Prager tensor , 1986 .

[42]  Sangtae Kim,et al.  The resistance and mobility functions of two equal spheres in low‐Reynolds‐number flow , 1985 .

[43]  David J. Jeffrey,et al.  Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow , 1984, Journal of Fluid Mechanics.

[44]  J. D. Wells,et al.  On the transport of compact particles through solutions of chain-polymers , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.