Robust Non-Parametric Template Matching with Local Rigidity Constraints

In this paper, we address the problem of non-parametric template matching which does not assume any specific deformation models. In real-world matching scenarios, deformation between a template and a matching result usually appears to be non-rigid and non-linear. We propose a novel approach called local rigidity constraints (LRC). LRC is built based on an assumption that the local rigidity, which is referred to as structural persistence between image patches, can help the algorithm to achieve better performance. A spatial relation test is proposed to weight the rigidity between two image patches. When estimating visual similarity under an unconstrained environment, high-level similarity (e.g. with complex geometry transformations) can then be estimated by investigating the number of LRC. In the searching step, exhaustive matching is possible because of the simplicity of the algorithm. Global maximum is given out as the final matching result. To evaluate our method, we carry out a comprehensive comparison on a publicly available benchmark and show that our method can outperform the state-of-the-art method. key words: non-parametric template matching, local rigidity constraints, visual similarity estimation

[1]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[2]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[3]  Federico Tombari,et al.  Performance Evaluation of Full Search Equivalent Pattern Matching Algorithms , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[5]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[7]  William T. Freeman,et al.  Best-Buddies Similarity for robust template matching , 2015, CVPR.

[8]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[9]  Denis Simakov,et al.  Summarizing visual data using bidirectional similarity , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[11]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[12]  Chao Zhang,et al.  High-Speed and Local-Changes Invariant Image Matching , 2015, IEICE Trans. Inf. Syst..

[13]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[14]  Paul Suetens,et al.  Nonrigid Image Registration Using Free-Form Deformations with a Local Rigidity Constraint , 2004, MICCAI.

[15]  Shun'ichi Kaneko,et al.  Using orientation codes for rotation-invariant template matching , 2004, Pattern Recognit..

[16]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[18]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[19]  Chao Zhang,et al.  Robust Visual Tracking via Coupled Randomness , 2015, IEICE Trans. Inf. Syst..

[20]  Chao Zhang,et al.  Fast Affine Template Matching over Galois Field , 2015, BMVC.

[21]  Nassir Navab,et al.  Deformable Template Tracking in 1ms , 2014, BMVC.

[22]  Federico Tombari,et al.  ZNCC-based template matching using bounded partial correlation , 2005, Pattern Recognit. Lett..