The fractional coupled KdV equations: Exact solutions and white noise functional approach

Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types.

[1]  Engui Fan,et al.  A direct approach with computerized symbolic computation for finding a series of traveling waves to nonlinear equations , 2003 .

[2]  Fred Espen Benth,et al.  A Remark on the Equivalence between Poisson and Gaussian Stochastic Partial Differential Equations , 1998 .

[3]  Ji-Huan He,et al.  Exp-function method for nonlinear wave equations , 2006 .

[4]  Ji-Huan He,et al.  Fractional Complex Transform for Fractional Differential Equations , 2010 .

[5]  Engui Fan,et al.  Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems , 2002 .

[6]  Xiaoliang Wan,et al.  Comput. Methods Appl. Mech. Engrg. , 2010 .

[7]  Ji-Huan He,et al.  Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus , 2012 .

[8]  Bin Chen,et al.  Periodic-like solutions of variable coefficient and Wick-type stochastic NLS equations , 2007 .

[9]  Wang Ming-liang,et al.  Applications of F-expansion method to the coupled KdV system , 2005 .

[10]  Y. C. Hon,et al.  A series of travelling wave solutions for two variant Boussinesq equations in shallow water waves , 2003 .

[11]  Hossein Jafari,et al.  Solving a multi-order fractional differential equation using adomian decomposition , 2007, Appl. Math. Comput..

[12]  R. Grimshaw,et al.  Steady gap solitons in a coupled Korteweg-de Vries system: A dynamical systems approach , 2010 .

[13]  Sachin Bhalekar,et al.  Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method , 2008, Appl. Math. Comput..

[14]  Engui Fan,et al.  An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinea , 2003 .

[15]  Shaher Momani,et al.  An explicit and numerical solutions of the fractional KdV equation , 2005, Math. Comput. Simul..

[16]  Miki Wadati Stochastic Korteweg-de Vries Equation , 1983 .

[17]  Ji-Huan He Homotopy perturbation technique , 1999 .

[18]  N. Sweilam,et al.  Numerical studies for a multi-order fractional differential equation , 2007 .

[19]  Zhang Jin-Liang,et al.  The periodic wave solutions for two systems of nonlinear wave equations , 2003 .

[20]  Yueming Wang,et al.  The periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation , 2003 .

[21]  P. Chow Stochastic partial differential equations , 1996 .

[22]  Bernt Øksendal,et al.  Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach , 1996 .

[23]  Mingliang Wang,et al.  The periodic wave solutions for the Klein–Gordon–Schrödinger equations , 2003 .

[24]  I. Podlubny Fractional differential equations , 1998 .

[25]  Mingliang Wang,et al.  Periodic wave solutions to a coupled KdV equations with variable coefficients , 2003 .

[26]  Ji-Huan He A coupling method of a homotopy technique and a perturbation technique for non-linear problems , 2000 .

[27]  A. Golbabai,et al.  Analytical treatment of differential equations with fractional coordinate derivatives , 2011, Comput. Math. Appl..

[28]  Ji-Huan He,et al.  Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method , 2007, Comput. Math. Appl..

[29]  Hossam A. Ghany,et al.  Exact Solutions for Stochastic Generalized Hirota-Satsuma Coupled KdV Equations , 2011 .

[30]  G. Jumarie,et al.  Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..

[31]  徐林,et al.  Controlled decoherence of floating flux qubits , 2010 .

[32]  S. Momani,et al.  Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order , 2008 .