Are PCPs Inherent in Efficient Arguments?

Starting with Kilian (STOC ‘92), several works have shown how to use probabilistically checkable proofs (PCPs) and cryptographic primitives such as collision-resistant hashing to construct very efficient argument systems (a.k.a. computationally sound proofs), for example with polylogarithmic communication complexity. Ishai et al. (CCC ‘07) raised the question of whether PCPs are inherent in efficient arguments, and to what extent. We give evidence that they are, by showing how to convert any argument system whose soundness is reducible to the security of some cryptographic primitive into a PCP system whose efficiency is related to that of the argument system and the reduction (under certain complexity assumptions). Keywords-PCP, MIP, Argument, Black-Box Reduction

[1]  Irit Dinur,et al.  The PCP theorem by gap amplification , 2006, STOC.

[2]  Mihir Bellare,et al.  Free Bits, PCPs, and Nonapproximability-Towards Tight Results , 1998, SIAM J. Comput..

[3]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[4]  Silvio Micali,et al.  The Knowledge Complexity of Interactive Proof Systems , 1989, SIAM J. Comput..

[5]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[6]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[7]  Luca Trevisan,et al.  Notions of Reducibility between Cryptographic Primitives , 2004, TCC.

[8]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[9]  Andrew Chi-Chih Yao,et al.  How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[10]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[11]  Avi Wigderson,et al.  Multi-prover interactive proofs: how to remove intractability assumptions , 2019, STOC '88.

[12]  Avi Wigderson,et al.  On interactive proofs with a laconic prover , 2001, computational complexity.

[13]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[14]  Boaz Barak,et al.  How to go beyond the black-box simulation barrier , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[15]  Ivan Damgård,et al.  Towards Practical Public Key Systems Secure Against Chosen Ciphertext Attacks , 1991, CRYPTO.

[16]  Rafail Ostrovsky,et al.  Efficient Arguments without Short PCPs , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[17]  Silvio Micali,et al.  Proofs that yield nothing but their validity and a methodology of cryptographic protocol design , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[18]  Oded Goldreich Foundations of Cryptography: Volume 1 , 2006 .

[19]  Oded Goldreich,et al.  Foundations of Cryptography: List of Figures , 2001 .

[20]  David Chaum,et al.  Minimum Disclosure Proofs of Knowledge , 1988, J. Comput. Syst. Sci..

[21]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[22]  László Lovász,et al.  Interactive proofs and the hardness of approximating cliques , 1996, JACM.

[23]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[24]  David Chaum,et al.  Multiparty Unconditionally Secure Protocols (Extended Abstract) , 1988, STOC.

[25]  Lance Fortnow,et al.  On the Power of Multi-Prover Interactive Protocols , 1994, Theor. Comput. Sci..

[26]  Eli Ben-Sasson,et al.  Short PCPs with Polylog Query Complexity , 2008, SIAM J. Comput..

[27]  Oded Goldreich Foundations of Cryptography: Index , 2001 .

[28]  Joe Kilian,et al.  A note on efficient zero-knowledge proofs and arguments (extended abstract) , 1992, STOC '92.

[29]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[30]  Oded Goldreich,et al.  Universal arguments and their applications , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[31]  A. Yao,et al.  Fair exchange with a semi-trusted third party (extended abstract) , 1997, CCS '97.

[32]  Ran Canetti,et al.  The random oracle methodology, revisited , 2000, JACM.

[33]  Silvio Micali,et al.  CS Proofs (Extended Abstracts) , 1994, FOCS 1994.

[34]  Oded Goldreich,et al.  The Foundations of Cryptography - Volume 2: Basic Applications , 2001 .

[35]  Moni Naor,et al.  On Cryptographic Assumptions and Challenges , 2003, CRYPTO.