Stochastic gravitational wave backgrounds

A stochastic background of gravitational waves could be created by the superposition of a large number of independent sources. The physical processes occurring at the earliest moments of the universe certainly created a stochastic background that exists, at some level, today. This is analogous to the cosmic microwave background, which is an electromagnetic record of the early universe. The recent observations of gravitational waves by the Advanced LIGO and Advanced Virgo detectors imply that there is also a stochastic background that has been created by binary black hole and binary neutron star mergers over the history of the universe. Whether the stochastic background is observed directly, or upper limits placed on it in specific frequency bands, important astrophysical and cosmological statements about it can be made. This review will summarize the current state of research of the stochastic background, from the sources of these gravitational waves to the current methods used to observe them.

[1]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[2]  R. Wald,et al.  General Relativity , 2020, The Cosmic Microwave Background.

[3]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[4]  B. P. Abbott,et al.  Erratum: Binary Black Hole Mergers in the First Advanced LIGO Observing Run [Phys. Rev. X 6 , 041015 (2016)] , 2018, Physical Review X.

[5]  anonymous,et al.  Erratum: GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2 [Phys. Rev. Lett. 118, 221101 (2017)]. , 2018, Physical review letters.

[6]  Anonymous,et al.  Erratum: Tests of General Relativity with GW150914 [Phys. Rev. Lett. 116, 221101 (2016)]. , 2018, Physical review letters.

[7]  N. Hambly,et al.  Gaia Reveals Evidence for Merged White Dwarfs , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[8]  G. Nelemans,et al.  LISA verification binaries with updated distances from Gaia Data Release 2 , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[10]  B. A. Boom,et al.  Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. , 2018, Physical review letters.

[11]  J. P. López-Zaragoza,et al.  Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20  μHz. , 2018, Physical review letters.

[12]  Irene Fiori,et al.  Measurement and subtraction of Schumann resonances at gravitational-wave interferometers , 2018, Physical Review D.

[13]  Chiara Caprini,et al.  Cosmological backgrounds of gravitational waves , 2018, Classical and Quantum Gravity.

[14]  Lyman A. Page,et al.  Results from the Atacama B-mode Search (ABS) experiment , 2018, Journal of Cosmology and Astroparticle Physics.

[15]  D. Martynov,et al.  Towards the design of gravitational-wave detectors for probing neutron-star physics , 2017, Physical Review D.

[16]  Y. Wang,et al.  Constraints on cosmic strings using data from the first Advanced LIGO observing run , 2017, 1712.01168.

[17]  B. A. Boom,et al.  GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences , 2017, 1710.05837.

[18]  B. A. Boom,et al.  First Search for Nontensorial Gravitational Waves from Known Pulsars. , 2017, Physical review letters.

[19]  D. Weir Gravitational waves from a first-order electroweak phase transition: a brief review , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[21]  A. Abbott Hungary rewards highly cited scientists with bonus grants , 2017, Nature.

[22]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[23]  B. A. Boom,et al.  Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817 , 2017, 1710.09320.

[24]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[25]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[26]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[27]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[28]  E. Bozzo,et al.  INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817 , 2017, 1710.05449.

[29]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[30]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[31]  X. Siemens,et al.  New limits on cosmic strings from gravitational wave observation , 2017, 1709.02434.

[32]  France.,et al.  Asymptotic g modes: Evidence for a rapid rotation of the solar core , 2017, 1708.00259.

[33]  R. Pietri,et al.  Spectral analysis of gravitational waves from binary neutron star merger remnants , 2017, 1707.03368.

[34]  T. Ebisuzaki,et al.  The status of DECIGO , 2017 .

[35]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[36]  N. Cornish,et al.  Impact of galactic foreground characterization on a global analysis for the LISA gravitational wave observatory , 2017, 1705.09421.

[37]  S. Babak “Enchilada” is back on the menu , 2017 .

[38]  T. Regimbau,et al.  Polarization-Based Tests of Gravity with the Stochastic Gravitational-Wave Background , 2017, 1704.08373.

[39]  P. Serpico,et al.  QCD-Electroweak First-Order Phase Transition in a Supercooled Universe. , 2017, Physical review letters.

[40]  I. Mandel,et al.  Formation of the first three gravitational-wave observations through isolated binary evolution , 2017, Nature communications.

[41]  Shuang-Nan Zhang,et al.  Stochastic gravitational wave background from newly born massive magnetars: The role of a dense matter equation of state , 2017, 1704.02013.

[42]  M. Pitkin,et al.  Probing dynamical gravity with the polarization of continuous gravitational waves , 2017, 1703.07530.

[43]  M. Gasperini Constraints on the production of primordial magnetic seeds in pre-big bang cosmology , 2017, 1702.06030.

[44]  J. E. Ruhl,et al.  CMB Polarization B-mode Delensing with SPTpol and Herschel , 2017, 1701.04396.

[45]  V. Mandic,et al.  Systematic study of the stochastic gravitational-wave background due to stellar core collapse , 2017, 1701.02638.

[46]  B. A. Boom,et al.  Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run , 2016, 1612.02029.

[47]  B. A. Boom,et al.  Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. , 2016, Physical review letters.

[48]  T. Regimbau,et al.  Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background. , 2016, Physical review letters.

[49]  Rainer Weiss,et al.  MHz gravitational wave constraints with decameter Michelson interferometers , 2016, 1611.05560.

[50]  Y. Wang,et al.  All-sky search for short gravitational-wave bursts in the first Advanced LIGO run , 2016, 1611.02972.

[51]  K. Olum,et al.  Gravitational backreaction on piecewise linear cosmic string loops , 2016, 1609.01685.

[52]  Joseph D. Romano,et al.  Detection methods for stochastic gravitational-wave backgrounds: a unified treatment , 2016, Living reviews in relativity.

[53]  Cody Messick,et al.  Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.

[54]  J. Silk,et al.  Stochastic gravitational waves associated with the formation of primordial black holes , 2016, 1612.06264.

[55]  Janusz Mlynarczyk,et al.  Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors , 2016, 1612.01102.

[56]  Adam A. Miller,et al.  Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project , 2016 .

[57]  J. García-Bellido,et al.  Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves , 2016, 1610.06481.

[58]  M. Colpi,et al.  Gravitational Wave Sources in the Era of Multi-Band Gravitational Wave Astronomy , 2016, 1610.05309.

[59]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[60]  M. Kunz,et al.  New CMB constraints for Abelian Higgs cosmic strings , 2016, 1609.03386.

[61]  V. Mandic,et al.  Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers. , 2016, Physical review letters.

[62]  Y. Wang,et al.  Upper limits on the rates of binary neutron star and neutron-star--black-hole mergers from Advanced LIGO's first observing run , 2016, 1607.07456.

[63]  B. Carr,et al.  Primordial Black Holes as Dark Matter , 2016, 1607.06077.

[64]  M. Gasperini Observable gravitational waves in pre-big bang cosmology: an update , 2016, 1606.07889.

[65]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[66]  J. P. López-Zaragoza,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[67]  J. Weisberg,et al.  RELATIVISTIC MEASUREMENTS FROM TIMING THE BINARY PULSAR PSR B1913+16 , 2016, 1606.02744.

[68]  B. A. Boom,et al.  GW150914: Implications for the stochastic gravitational wave background from binary black holes , 2016 .

[69]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[70]  A. Sesana Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.

[71]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[72]  Robert W. Taylor,et al.  ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 , 2016 .

[73]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[74]  B. A. Boom,et al.  THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.

[75]  Frederic A. Rasio,et al.  Binary Black Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar Evolution , 2016, 1602.02444.

[76]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[77]  W. Chaibi,et al.  Low frequency gravitational wave detection with ground-based atom interferometer arrays , 2016, 1601.00417.

[78]  Ely D. Kovetz,et al.  The Quest for B Modes from Inflationary Gravitational Waves , 2015, 1510.06042.

[79]  U. Helsinki,et al.  Standard model cross-over on the lattice , 2015, 1508.07161.

[80]  A. Melchiorri,et al.  New constraints on primordial gravitational waves from Planck 2015 , 2015, 1508.02393.

[81]  Matthew West,et al.  The PyCBC search for gravitational waves from compact binary coalescence , 2015, 1508.02357.

[82]  C. A. Oxborrow,et al.  Planck 2015 results. IX. Diffuse component separation: CMB maps , 2015, 1502.05956.

[83]  N. M. Brown,et al.  Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo , 2013, Living Reviews in Relativity.

[84]  B. A. Boom,et al.  SUPPLEMENT: “THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914” (2016, ApJL, 833, L1) , 2016 .

[85]  Antoine Petiteau,et al.  Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions , 2015, 1512.06239.

[86]  Tristan L. Smith,et al.  Gravitational-wave cosmology across 29 decades in frequency , 2015, 1511.05994.

[87]  Y. Wang,et al.  All-sky search for long-duration gravitational wave transients with initial LIGO , 2016 .

[88]  C. S. Unnikrishnan,et al.  IndIGO and LIGO-India: Scope and Plans for Gravitational Wave Research and Precision Metrology in India , 2015, 1510.06059.

[89]  Q. Cheng,et al.  Stochastic gravitational wave background from magnetic deformation of newly born magnetars , 2015, 1509.07651.

[90]  M. Bailes,et al.  Gravitational waves from binary supermassive black holes missing in pulsar observations , 2015, Science.

[91]  John E. Vaillancourt,et al.  Interstellar Dust Grain Alignment , 2015 .

[92]  Yan Wang,et al.  THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND , 2015, 1508.03024.

[93]  Sean A. Morris,et al.  Mock data and science challenge for detecting an astrophysical stochastic gravitational-wave background with Advanced LIGO and Advanced Virgo , 2015, 1506.06744.

[94]  V. Mandic,et al.  Model of the stochastic gravitational-wave background due to core collapse to black holes , 2015, 1506.02631.

[95]  O. E. Bronson Messer,et al.  Gravitational Wave Signatures of Ab Initio Two-Dimensional Core Collapse Supernova Explosion Models for 12-25 Solar Masses Stars , 2015, 1505.05824.

[96]  T. Kahniashvili,et al.  Polarized gravitational waves from cosmological phase transitions , 2015, 1505.03680.

[97]  Warren R. Brown,et al.  Ultra-compact binaries as gravitational wave sources , 2015 .

[98]  Delphine Perrodin,et al.  European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.

[99]  S. Huber,et al.  Numerical simulations of acoustically generated gravitational waves at a first order phase transition , 2015, 1504.03291.

[100]  P. A. R. Ade,et al.  MEASUREMENTS OF SUB-DEGREE B-MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2015, 1503.02315.

[101]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[102]  R. W. Ogburn,et al.  Joint Analysis of BICEP2/Keck Array and Planck Data , 2015, 1502.00612.

[103]  Marco O. P. Sampaio,et al.  Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.

[104]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[105]  J. K. Blackburn,et al.  Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors , 2020 .

[106]  Alejandro López,et al.  First test of high frequency Gravity Waves from inflation using Advanced LIGO , 2013, 1305.5855.

[107]  T. Regimbau,et al.  Effect of metallicity on the gravitational-wave signal from the cosmological population of compact binary coalescences , 2012, 1205.4621.

[108]  David N. Spergel,et al.  THE ATACAMA COSMOLOGY TELESCOPE: LENSING OF CMB TEMPERATURE AND POLARIZATION DERIVED FROM COSMIC INFRARED BACKGROUND CROSS-CORRELATION , 2014, 1412.0626.

[109]  E. Thrane,et al.  Estimates of maximum energy density of cosmological gravitational-wave backgrounds , 2014 .

[110]  P. Shellard,et al.  Constraints on the Nambu-Goto cosmic string contribution to the CMB power spectrum in light of new temperature and polarisation data , 2014, 1410.5046.

[111]  M. Coughlin,et al.  Constraining the gravitational-wave energy density of the Universe in the range 0.1 Hz to 1 Hz using the Apollo Seismic Array , 2014, 1409.4680.

[112]  N. Leroy,et al.  Improved constraint on the primordial gravitational-wave density using recent cosmological data and its impact on cosmic string models , 2014, 1408.5299.

[113]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[114]  Britt Reichborn-Kjennerud,et al.  The performance of the bolometer array and readout system during the 2012/2013 flight of the E and B experiment (EBEX) , 2014, Astronomical Telescopes and Instrumentation.

[115]  S. Klimenko,et al.  Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. , 2014, Physical review letters.

[116]  R. Schofield,et al.  Correlated noise in networks of gravitational-wave detectors: subtraction and mitigation , 2014, 1406.2367.

[117]  M. Coughlin,et al.  Constraining the gravitational wave energy density of the Universe using Earth’s ring , 2014, 1406.1147.

[118]  David N. Spergel,et al.  Toward an understanding of foreground emission in the BICEP2 region , 2014, 1405.7351.

[119]  T. Regimbau,et al.  Measuring neutron-star ellipticity with measurements of the stochastic gravitational-wave background , 2014, 1404.4025.

[120]  Stefano Vitale,et al.  Space-borne gravitational wave observatories , 2014, 1404.3136.

[121]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.

[122]  E. M. Leitch,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION POWER SPECTRUM AT SUB-DEGREE SCALES WITH POLARBEAR , 2014, 1403.2369.

[123]  D. Siegel,et al.  AN UPPER BOUND FROM HELIOSEISMOLOGY ON THE STOCHASTIC BACKGROUND OF GRAVITATIONAL WAVES , 2014, 1401.6888.

[124]  M. Coughlin,et al.  Upper limit on a stochastic background of gravitational waves from seismic measurements in the range 0.05-1 Hz. , 2014, Physical review letters.

[125]  Caltech,et al.  Measuring the angular momentum distribution in core-collapse supernova progenitors with gravitational waves , 2013, 1311.3678.

[126]  John T. Whelan,et al.  Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data , 2013, 1310.5633.

[127]  S. Klimenko,et al.  Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. , 2013, Physical review letters.

[128]  K. Olum,et al.  Number of cosmic string loops , 2013, 1309.6637.

[129]  N. Cornish,et al.  Detecting a Stochastic Gravitational Wave Background in the presence of a Galactic Foreground and Instrument Noise , 2013, 1307.4116.

[130]  S. Huber,et al.  Gravitational waves from the sound of a first order phase transition. , 2013, Physical review letters.

[131]  G. W. Pratt,et al.  Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.

[132]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[133]  C. A. Oxborrow,et al.  Planck2013 results. XII. Diffuse component separation , 2013, Astronomy & Astrophysics.

[134]  D. Wake,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring DA and H at z = 0.57 from the baryon acoustic peak in the data release 9 spectroscopic galaxy sample , 2013, 1303.4666.

[135]  David N. Spergel,et al.  The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data , 2013, 1301.1037.

[136]  Massimo Tinto,et al.  Time-Delay Interferometry , 2003, Living reviews in relativity.

[137]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[138]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[139]  R. Price,et al.  Pulsar timing arrays , 2013 .

[140]  D. Champion,et al.  The European Pulsar Timing Array and the Large European Array for Pulsars , 2013 .

[141]  R. Manchester The International Pulsar Timing Array , 2013, 1309.7392.

[142]  B Schulz,et al.  Detection of B-mode polarization in the cosmic microwave background with data from the South Pole Telescope. , 2013, Physical review letters.

[143]  K. Hotokezaka,et al.  Remnant massive neutron stars of binary neutron star mergers: Evolution process and gravitational waveform , 2013, 1307.5888.

[144]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[145]  N. Cornish,et al.  Pulsar timing array analysis for black hole backgrounds , 2013, 1305.0326.

[146]  P. Saulson Gravitational wave detection: Principles and practice , 2013 .

[147]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[148]  Nelson Christensen,et al.  Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications , 2013, 1303.2613.

[149]  T. Regimbau,et al.  Accessibility of the stochastic gravitational wave background from magnetars to the interferometric gravitational wave detectors , 2013 .

[150]  P. Lasky,et al.  Stochastic gravitational wave background from hydrodynamic turbulence in differentially rotating neutron stars , 2013, 1302.6033.

[151]  Shane L. Larson,et al.  Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors , 2012, Living reviews in relativity.

[152]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[153]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[154]  V. Mandic,et al.  Measurement of parity violation in the early universe using gravitational-wave detectors , 2012, 1212.4165.

[155]  E. Howell,et al.  On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers , 2012, 1209.0595.

[156]  K. Riles,et al.  Gravitational Waves: Sources, Detectors and Searches , 2012, 1209.0667.

[157]  Chongqing,et al.  The Parkes Pulsar Timing Array Project , 2006, Publications of the Astronomical Society of Australia.

[158]  M. Benacquista,et al.  Relativistic Binaries in Globular Clusters , 2002, Living reviews in relativity.

[159]  M. Mclaughlin The North American Nanohertz Observatory for Gravitational Waves , 2013 .

[160]  M. Ramsey-Musolf,et al.  Electroweak baryogenesis , 2012, 1206.2942.

[161]  P. Rosado Gravitational wave background from rotating neutron stars , 2012, 1206.1330.

[162]  B. Owen,et al.  Maximum elastic deformations of relativistic stars , 2012, 1208.5227.

[163]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[164]  Tristan L. Smith,et al.  Improved limits on short-wavelength gravitational waves from the cosmic microwave background , 2012, 1203.4232.

[165]  J. Silk,et al.  Forecast constraints on cosmic string parameters from gravitational wave direct detection experiments , 2012, 1202.3032.

[166]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[167]  C. Broeck,et al.  Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz , 2011, 1112.5004.

[168]  V. Mandic,et al.  Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors , 2011, 1112.1898.

[169]  K. Wette Estimating the sensitivity of wide-parameter-space searches for gravitational-wave pulsars , 2011, 1111.5650.

[170]  M. Peloso,et al.  Gauge Field Production in Axion Inflation: Consequences for Monodromy, non-Gaussianity in the CMB, and Gravitational Waves at Interferometers , 2011, 1110.3327.

[171]  L. Sorbo,et al.  Particle production during inflation and gravitational waves detectable by ground-based interferometers , 2011, 1109.0022.

[172]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[173]  S. Portegies Zwart,et al.  Imprint of the merger and ring-down on the gravitational wave background from black hole binaries coalescence , 2011, 1111.6125.

[174]  O. Zahn,et al.  NEW LIMITS ON EARLY DARK ENERGY FROM THE SOUTH POLE TELESCOPE , 2011, 1110.5328.

[175]  J. K. Blackburn,et al.  Directional limits on persistent gravitational waves using LIGO S5 science data. , 2011, Physical review letters.

[176]  W. Anderson,et al.  Gravitational-wave physics and astronomy: An introduction to theory, experiment and data analysis , 2011 .

[177]  P. Rosado,et al.  Gravitational wave background from binary systems , 2011, 1106.5795.

[178]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[179]  David Blair,et al.  STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM COALESCING BINARY BLACK HOLES , 2011, 1104.3565.

[180]  P. McMillan,et al.  Mass models of the Milky Way , 2011, 1102.4340.

[181]  Chris L. Fryer,et al.  Gravitational Waves from Gravitational Collapse , 2011, Living reviews in relativity.

[182]  T. Regimbau The astrophysical gravitational wave stochastic background , 2011, 1101.2762.

[183]  C. B. Netterfield,et al.  Planck early results - I. The Planck mission , 2011, 1101.2022.

[184]  R. Ciolfi,et al.  Stochastic background of gravitational waves emitted by magnetars , 2010, 1009.1240.

[185]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[186]  J. Cardoso,et al.  CMB and SZ effect separation with constrained Internal Linear Combinations , 2010, 1006.5599.

[187]  M. Sakellariadou,et al.  Cosmic string loop distribution on all length scales and at any redshift , 2010, 1006.0931.

[188]  A. Aguirre,et al.  The enrichment history of cosmic metals , 2010, 1005.3921.

[189]  O. E. Bronson Messer,et al.  Gravitational waves from core collapse supernovae , 2010, Classical and Quantum Gravity.

[190]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[191]  V. Mandic,et al.  Gravitational-wave stochastic background from kinks and cusps on cosmic strings , 2010, 1004.0890.

[192]  N. Cornish,et al.  Discriminating between a stochastic gravitational wave background and instrument noise , 2010, 1002.1291.

[193]  A. Treves,et al.  Galactic neutron stars - I. Space and velocity distributions in the disk and in the halo , 2009, 0908.3182.

[194]  J. Hinderer,et al.  GGP (Global Geodynamics Project): An International Network of Superconducting Gravimeters to Study Time-Variable Gravity , 2010 .

[195]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[196]  R. Durrer,et al.  The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition , 2009, 0909.0622.

[197]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[198]  Bayesian approach to the study of white dwarf binaries in LISA data: The application of a reversible jump Markov chain Monte Carlo method , 2009, 0907.2198.

[199]  D. Holz,et al.  Ultrahigh precision cosmology from gravitational waves , 2009, 0906.3752.

[200]  V. Ferrari,et al.  Gravitational wave backgrounds and the cosmic transition from Population III to Population II stars , 2009, 0906.0461.

[201]  G. Hobbs The Parkes Pulsar Timing Array , 2009, 1307.2629.

[202]  K. Kadau,et al.  Breaking strain of neutron star crust and gravitational waves. , 2009, Physical review letters.

[203]  Tomohiro Takahashi,et al.  Chiral primordial gravitational waves from a Lifshitz point. , 2009, Physical review letters.

[204]  M. Sakellariadou Cosmic Strings and Cosmic Superstrings , 2009, 0902.0569.

[205]  C. Ott,et al.  Gravitational wave burst signal from core collapse of rotating stars , 2008, 0806.4953.

[206]  P. Graff,et al.  The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.

[207]  S. Huber,et al.  Gravitational wave production by collisions: more bubbles , 2008, 0806.1828.

[208]  J. Harms,et al.  Subtraction-noise projection in gravitational-wave detector networks , 2008, 0803.0226.

[209]  Mairi Sakellariadou,et al.  Cosmic superstrings , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[210]  R. Durrer,et al.  Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach , 2007, 0711.2593.

[211]  Eric Poisson Gravitational Waves, Volume 1: Theory and Experiments , 2008 .

[212]  N. Cornish,et al.  Extracting galactic binary signals from the first round of Mock LISA Data Challenges , 2007, 0704.2917.

[213]  James Clark,et al.  Inference on white dwarf binary systems using the first round Mock LISA Data Challenges data sets , 2007, 0704.0048.

[214]  et al,et al.  Upper limit map of a background of gravitational waves (Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76, (082003)) , 2007, astro-ph/0703234.

[215]  E. Nakar Short-hard gamma-ray bursts , 2007, astro-ph/0701748.

[216]  K. Nomoto,et al.  Supernova Nucleosynthesis in Population III 13-50 M☉ Stars and Abundance Patterns of Extremely Metal-poor Stars , 2007, astro-ph/0701381.

[217]  R. Easther,et al.  Gravitational wave production at the end of inflation. , 2006, Physical review letters.

[218]  V. Mandic,et al.  Gravitational-wave stochastic background from cosmic strings. , 2006, Physical review letters.

[219]  N. Seto Quest for circular polarization of a gravitational wave background and orbits of laser interferometers in space , 2006, astro-ph/0609633.

[220]  F. Bouchet,et al.  Cosmological evolution of cosmic string loops , 2005, astro-ph/0511646.

[221]  M. Fujimoto,et al.  Gravitational Wave Detection , 2007 .

[222]  K. Postnov,et al.  The Evolution of Compact Binary Star Systems , 2006, Living reviews in relativity.

[223]  L. S. Collaboration Searching for a Stochastic Background of Gravitational Waves with LIGO , 2006, astro-ph/0608606.

[224]  G. Woan,et al.  Principal component analysis for LISA: The time delay interferometry connection , 2006 .

[225]  Naoki Seto,et al.  The Japanese space gravitational wave antenna—DECIGO , 2006 .

[226]  J. Read,et al.  Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints , 2006, gr-qc/0603115.

[227]  K. Olive,et al.  Gravitational waves from the first stars , 2006, astro-ph/0603544.

[228]  R. Durrer,et al.  Gravitational waves from stochastic relativistic sources : primordial turbulence and magnetic fields , 2006, astro-ph/0603476.

[229]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[230]  J. W. Armstrong,et al.  Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking , 2006, Living reviews in relativity.

[231]  S. Ransom,et al.  A Radio Pulsar Spinning at 716 Hz , 2006, Science.

[232]  N. Cornish,et al.  Detecting the cosmic gravitational wave background with the Big Bang Observer , 2005, gr-qc/0512039.

[233]  J. Harms,et al.  Big Bang Observer and the neutron-star-binary subtraction problem , 2005, gr-qc/0511092.

[234]  V. Mandic,et al.  Accessibility of the pre-big-bang models to LIGO , 2005, astro-ph/0510341.

[235]  S. Ballmer A radiometer for stochastic gravitational waves , 2005, gr-qc/0510096.

[236]  M. M. Casey,et al.  Upper limits on a stochastic background of gravitational waves. , 2005, Physical review letters.

[237]  Gennaro Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005 .

[238]  N. Christensen,et al.  Bayesian modeling of source confusion in LISA data , 2005, gr-qc/0506055.

[239]  N. Christensen,et al.  LISA source confusion: identification and characterization of signals , 2005, gr-qc/0503121.

[240]  A. Buonanno,et al.  Stochastic Gravitational Wave Background from Cosmological Supernovae , 2004, astro-ph/0412277.

[241]  M. Sakellariadou,et al.  A note on the evolution of cosmic string/superstring networks , 2004, hep-th/0410234.

[242]  T. Damour,et al.  Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows , 2004, hep-th/0410222.

[243]  New BBN limits on physics beyond the standard model from 4He , 2004, astro-ph/0408033.

[244]  J. Polchinski,et al.  Collisions of cosmic F- and D-strings , 2004, hep-th/0405229.

[245]  E. al.,et al.  Analysis of First LIGO Science Data for Stochastic Gravitational Waves , 2003, gr-qc/0312088.

[246]  Luciano Iess,et al.  Stochastic Gravitational Wave Background: Upper Limits in the 10–6 to 10–3 Hz Band , 2003 .

[247]  M. Sakellariadou,et al.  How generic is cosmic string formation in supersymmetric grand unified theories , 2003 .

[248]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[249]  Alison J. Farmer,et al.  The gravitational wave background from cosmological compact binaries , 2003, astro-ph/0304393.

[250]  A. Guth,et al.  Inflationary spacetimes are incomplete in past directions. , 2003, Physical review letters.

[251]  Sami W. Asmar,et al.  The Cassini gravitational wave experiment , 2003, SPIE Astronomical Telescopes + Instrumentation.

[252]  A. Jaffe,et al.  Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries , 2002, astro-ph/0210148.

[253]  Chunglee Kim,et al.  The Probability Distribution Of Binary Pulsar Coalescence Rates. II. Neutron Star-White Dwarf Binaries , 2002, astro-ph/0402162.

[254]  Chunglee Kim,et al.  The Probability Distribution of Binary Pulsar Coalescence Rates. I. Double Neutron Star Systems in the Galactic Field , 2003 .

[255]  Cosmic string production towards the end of brane inflation , 2002, hep-th/0204074.

[256]  N. Cornish Making maps with LISA , 2002 .

[257]  Pierre Papon,et al.  The physics of phase transitions : concepts and applications , 2002 .

[258]  A. Guth,et al.  Inflationary spacetimes are not past-complete , 2001, gr-qc/0110012.

[259]  C. Skordis,et al.  The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements , 2001, astro-ph/0109232.

[260]  N. Cornish Mapping the gravitational-wave background , 2001, astro-ph/0105374.

[261]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[262]  T. Damour,et al.  Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.

[263]  Neil J. CornishShane L. Larson Space missions to detect the cosmic gravitational-wave background , 2001, gr-qc/0103075.

[264]  N. Christensen,et al.  Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.

[265]  Pierre Papon,et al.  The physics of phase transitions , 2001 .

[266]  T. Damour,et al.  Gravitational wave bursts from cosmic strings , 2000, Physical review letters.

[267]  M. Shibata,et al.  Simulation of merging binary neutron stars in full general relativity: Γ=2 case , 1999, gr-qc/9911058.

[268]  S. Shapiro,et al.  On the Maximum Mass of Differentially Rotating Neutron Stars , 1999, The Astrophysical journal.

[269]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[270]  S. Matarrese,et al.  Stochastic background of gravitational waves generated by a cosmological population of young, rapidly rotating neutron stars , 1998, Monthly Notices of the Royal Astronomical Society.

[271]  B. Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1997, gr-qc/9710117.

[272]  Lars Bildsten,et al.  Gravitational Radiation and Rotation of Accreting Neutron Stars , 1998, astro-ph/9804325.

[273]  Bernard F. Schutz,et al.  Gravitational waves from hot young rapidly rotating neutron stars , 1998, gr-qc/9804044.

[274]  M. Trodden Electroweak Baryogenesis , 1998, hep-ph/9803479.

[275]  Matias Zaldarriaga,et al.  Gravitational lensing effect on cosmic microwave background polarization , 1998, astro-ph/9803150.

[276]  N. Andersson A New Class of Unstable Modes of Rotating Relativistic Stars , 1997, gr-qc/9706075.

[277]  S. Morsink,et al.  Axial Instability of Rotating Relativistic Stars , 1997, gr-qc/9706073.

[278]  Peter L. Bender,et al.  Confusion noise level due to galactic and extragalactic binaries , 1997 .

[279]  M. Turner Detectability of inflation-produced gravitational waves , 1996, astro-ph/9607066.

[280]  A. Buonanno,et al.  Spectrum of relic gravitational waves in string cosmology , 1996, gr-qc/9605072.

[281]  J. Binney,et al.  Mass models of the Milky Way , 1996, astro-ph/9612059.

[282]  B. Allen The Stochastic Gravity-Wave Background: Sources and Detection , 1996, gr-qc/9604033.

[283]  Allen,et al.  CBR anisotropy from inflation-induced gravitational waves in mixed radiation and dust cosmology. , 1995, Physical review. D, Particles and fields.

[284]  M. Füllekrug Schumann resonances in magnetic field components , 1995 .

[285]  H. Volland,et al.  Handbook of atmospheric electrodynamics , 1995 .

[286]  G. Veneziano,et al.  Phenomenological aspects of the pre-big-bang scenario in string cosmology , 1994, hep-th/0207130.

[287]  Allen,et al.  Closed-form expression for the gravitational radiation rate from cosmic strings. , 1994, Physical review. D, Particles and fields.

[288]  Allen,et al.  CBR anisotropy from primordial gravitational waves in inflationary cosmologies. , 1994, Physical review. D, Particles and fields.

[289]  Bar-Kana Limits on direct detection of gravitational waves. , 1994, Physical review. D, Particles and fields.

[290]  C. Bennett,et al.  Measurement of the Cosmic Microwave Background spectrum by the COBE FIRAS instrument , 1994 .

[291]  Bordé,et al.  Eternal inflation and the initial singularity. , 1993, Physical review letters.

[292]  Turner,et al.  Gravitational radiation from first-order phase transitions. , 1993, Physical review. D, Particles and fields.

[293]  G. Veneziano,et al.  Inflation, deflation, and frame independence in string cosmology , 1993, hep-th/9309023.

[294]  Grishchuk Relic gravitational waves and limits on inflation. , 1993, Physical review. D, Particles and fields.

[295]  G. Veneziano,et al.  Pre-big-bang in string cosmology , 1992, hep-th/9211021.

[296]  Christensen,et al.  Measuring the stochastic gravitational-radiation background with laser-interferometric antennas. , 1992, Physical review. D, Particles and fields.

[297]  Watkins,et al.  Gravitational waves from first-order cosmological phase transitions. , 1992, Physical review letters.

[298]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[299]  Watkins,et al.  Gravitational radiation from colliding vacuum bubbles. , 1992, Physical review. D, Particles and fields.

[300]  Rovelli,et al.  Weaving a classical metric with quantum threads. , 1992, Physical review letters.

[301]  Caldwell,et al.  Small-scale structure on a cosmic-string network. , 1991, Physical review. D, Particles and fields.

[302]  Sakellariadou Gravitational waves emitted from infinite strings. , 1990, Physical review. D, Particles and fields.

[303]  Matzner,et al.  Numerical simulation of bosonic-superconducting-string interactions. , 1990, Physical review. D, Particles and fields.

[304]  M. Phillips,et al.  Supernova 1987 A , 1989 .

[305]  I. Iben,et al.  Degenerate dwarf binaries as promising, detectable sources of gravitational radiation , 1987 .

[306]  M. Davis,et al.  Millisecond Pulsar PSR 1937+21: A Highly Stable Clock , 1987, Science.

[307]  J. Armstrong,et al.  A search for sinusoidal gravitational radiation in the period range 30-2000 seconds , 1987 .

[308]  C. Hogan Runaway cosmic strings , 1987, Nature.

[309]  E. Shellard Cosmic String Interactions , 1987 .

[310]  E. P. S. Shellard,et al.  Cosmic Strings and Other Topological Defects , 1995 .

[311]  J. Anderson,et al.  Pioneer 10 search for gravitational waves—no evidence for coherent radiation from Geminga , 1984, Nature.

[312]  S. Boughn,et al.  Limits on a stochastic gravitational wave background from observations of terrestrial and solar oscillations , 1984 .

[313]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[314]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[315]  J. H. Taylor,et al.  A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16 , 1982 .

[316]  Michael S. Turner,et al.  The early Universe , 1981, Nature.

[317]  R. Hellings Spacecraft-Doppler gravity-wave detection. I. Theory , 1981 .

[318]  J. Anderson,et al.  Spacecraft-Doppler gravity-wave detection. II - Results , 1981 .

[319]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[320]  S. Hawking,et al.  Quantum gravitational bubbles , 1980 .

[321]  B. Carr Cosmological gravitational waves - Their origin and consequences , 1980 .

[322]  W. Press,et al.  Gravitational waves. , 1980, Science.

[323]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[324]  A. A. Starobinskii,et al.  Spectrum of Relict Gravitational Radiation and the Early State of the Universe - JETP Lett. 30, 682 (1979) , 1979 .

[325]  J. Armstrong,et al.  Interplanetary phase scintillation and the search for very low frequency gravitational radiation , 1979 .

[326]  S. Hawking Quantum gravity and path integrals , 1978 .

[327]  Bernard F. Schutz,et al.  Secular instability of rotating Newtonian stars. , 1978 .

[328]  M. Zimmermann Revised estimate of gravitational radiation from Crab and Vela pulsars , 1978, Nature.

[329]  D. Pines,et al.  Neutron star structure: theory, observation, and speculation. , 1976 .

[330]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[331]  G. Chapline,et al.  Cosmological effects of primordial black holes , 1975, Nature.

[332]  Hugo D. Wahlquist,et al.  Response of Doppler spacecraft tracking to gravitational radiation , 1975 .

[333]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[334]  W. Press,et al.  Gravitational-wave astronomy , 1972 .

[335]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .

[336]  Subrahmanyan Chandrasekhar,et al.  Solutions of Two Problems in the Theory of Gravitational Radiation , 1970 .

[337]  F. Dyson Seismic Response of the Earth to a Gravitational Wave in the 1-Hz Band , 1969 .

[338]  T. Gold Rotating Neutron Stars and the Nature of Pulsars , 1969, Nature.

[339]  A. Hewish,et al.  Observation of a Rapidly Pulsating Radio Source , 1968, Nature.

[340]  T. Gold Rotating Neutron Stars as the Origin of the Pulsating Radio Sources , 1968, Nature.

[341]  Andrej Dmitrievich Sakharov,et al.  SPECIAL ISSUE: Violation of CP in variance, C asymmetry, and baryon asymmetry of the universe , 1991 .

[342]  R. Sachs,et al.  Perturbations of a Cosmological Model and Angular Variations of the Microwave Background , 1967 .

[343]  P. J. E. Peebles,et al.  Cosmic Black-Body Radiation , 1965 .

[344]  A. Penzias,et al.  A Measurement of excess antenna temperature at 4080-Mc/s , 1965 .

[345]  RALPH A. ALPHER,et al.  Evolution of the Universe , 1948, Nature.

[346]  A. Einstein The Foundation of the General Theory of Relativity , 1916 .

[347]  A. Einstein,et al.  Die Grundlage der allgemeinen Relativitätstheorie , 1916 .

[348]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.