Unsupervised classification of PolInSAR image based on Shannon Entropy Characterization

In this paper, we propose a new method for unsupervised classification of polarimetric synthetic aperture radar interferometry (PolInSAR) images based on Shannon Entropy Characterization. Firstly, we use polarimetric H (entropy) and a parameters to classify the image initially. Then, we reclassify the image according to the span of Shannon Entropy Characterization. Finally, we fuse the results of the two previous steps and merge them to the specified number of clusters. The effectiveness of this method is demonstrated on CETC38 PolInSAR data and E-SAR PolInSAR data.

[1]  S. R. Cloude,et al.  Unsupervized classification of full polarimetric SAR data and feature vectors identificat1on using radar target decomposition theorems and entropy analysis , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[2]  Laurent Ferro-Famil,et al.  Building characterization using L-band polarimetric interferometric SAR data , 2005, IEEE Geoscience and Remote Sensing Letters.

[3]  Laurent Ferro-Famil,et al.  Classification and interpretation of polarimetric interferometric SAR data , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[4]  Jérôme Morio,et al.  A Characterization of Shannon Entropy and Bhattacharyya Measure of Contrast in Polarimetric and Interferometric SAR Image , 2009, Proceedings of the IEEE.

[5]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  Irena Hajnsek,et al.  Forest Classification Based on L-Band Polarimetric and Interferometric SAR Data , 2005 .

[7]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[8]  Maxim Neumann,et al.  A Self-Initializing PolInSAR Classifier Using Interferometric Phase Differences , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Marc Acheroy,et al.  Fusion of PolSAR and PolInSAR data for land cover classification , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[10]  E. Pottier,et al.  Classification of Polarimetric Interferometric SAR data , 2001 .

[11]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[12]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..