Sequential Designs for Binary Data with the Purpose to Maximize the Probability of Response

Two kinds of sequential designs are proposed for finding the point that maximizes the probability of response assuming a binary response variable and a quadratic logistic regression model. One is a parametric optimal design approach, and the other one is a nonparametric stochastic approximation approach. The suggested sequential designs are evaluated and compared in a simulation study. In summary, the parametric approach performed very well whereas its competitor failed in some cases.