Verifying Safety and Persistence in Hybrid Systems Using Flowpipes and Continuous Invariants

We describe a method for verifying the temporal property of persistence in non-linear hybrid systems. Given some system and an initial set of states, the method establishes that system trajectories always eventually evolve into some specified target subset of the states of one of the discrete modes of the system, and always remain within this target region. The method also computes a time-bound within which the target region is always reached. The approach combines flowpipe computation with deductive reasoning about invariants and is more general than each technique alone. We illustrate the method with a case study showing that potentially destructive stick-slip oscillations of an oil-well drill eventually die away for a certain choice of drill control parameters. The case study demonstrates how just using flowpipes or just reasoning about invariants alone can be insufficient and shows the richness of systems that one can handle with the proposed method, since the systems features modes with non-polynomial ODEs. We also propose an alternative method for proving persistence that relies solely on flowpipe computation.

[1]  Sharad Malik,et al.  Computer Aided Verification, 20th International Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings , 2008, CAV.

[2]  Oliver E. Theel,et al.  Stabhyli: a tool for automatic stability verification of non-linear hybrid systems , 2013, HSCC '13.

[3]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[4]  Pierre Roux,et al.  A reflexive tactic for polynomial positivity using numerical solvers and floating-point computations , 2017, CPP.

[5]  James Kapinski,et al.  Locally optimal reach set over-approximation for nonlinear systems , 2016, 2016 International Conference on Embedded Software (EMSOFT).

[6]  Nedialko S. Nedialkov,et al.  On Taylor Model Based Integration of ODEs , 2007, SIAM J. Numer. Anal..

[7]  N. Nedialkov,et al.  Interval Tools for ODEs and DAEs , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).

[8]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[9]  Bai Xue,et al.  Reach-Avoid Verification for Nonlinear Systems Based on Boundary Analysis , 2017, IEEE Transactions on Automatic Control.

[10]  Joël Ouaknine,et al.  Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid Systems , 2003, Int. J. Found. Comput. Sci..

[11]  Deepak Kapur,et al.  Synthesizing Switching Controllers for Hybrid Systems by Generating Invariants , 2013, Theories of Programming and Formal Methods.

[12]  Edmund M. Clarke,et al.  Computing differential invariants of hybrid systems as fixedpoints , 2008, Formal Methods Syst. Des..

[13]  Andreas Podelski,et al.  Region Stability Proofs for Hybrid Systems , 2007, FORMATS.

[14]  P. Olver Nonlinear Systems , 2013 .

[15]  Sayan Mitra,et al.  Lyapunov abstractions for inevitability of hybrid systems , 2012, HSCC '12.

[16]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[17]  Sayan Mitra,et al.  Abstraction Refinement for Stability , 2011, 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems.

[18]  M. Stadtherr,et al.  Validated solutions of initial value problems for parametric ODEs , 2007 .

[19]  Mats Jirstrand Cylindrical Algebraic Decomposition - an Introduction , 1995 .

[20]  R. Suarez,et al.  Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstrings , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[21]  Lawrence C. Paulson,et al.  MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions , 2010, Journal of Automated Reasoning.

[22]  Xin Chen,et al.  Flow*: An Analyzer for Non-linear Hybrid Systems , 2013, CAV.

[23]  Andreas Podelski,et al.  Model Checking of Hybrid Systems: From Reachability Towards Stability , 2006, HSCC.

[24]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[25]  Oded Maler,et al.  Systematic Simulation Using Sensitivity Analysis , 2007, HSCC.

[26]  E. Davison,et al.  A computational method for determining quadratic lyapunov functions for non-linear systems , 1971 .

[27]  Ashish Tiwari,et al.  Generating Box Invariants , 2008, HSCC.

[28]  Ashish Tiwari,et al.  Deductive Verification of Continuous Dynamical Systems , 2009, FSTTCS.

[29]  Ron Koymans,et al.  Specifying real-time properties with metric temporal logic , 1990, Real-Time Systems.

[30]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[31]  André Platzer,et al.  KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description) , 2008, IJCAR.

[32]  Martin Berz,et al.  COSY INFINITY Version 9 , 2006 .

[33]  Eva M. Navarro-López,et al.  Hybrid automata: an insight into the discrete abstraction of discontinuous systems , 2011, Int. J. Syst. Sci..

[34]  Oliver E. Theel,et al.  Hybrid Tools for Hybrid Systems - Proving Stability and Safety at Once , 2015, FORMATS.

[35]  Assia Mahboubi,et al.  Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination , 2012, Log. Methods Comput. Sci..

[36]  Mathukumalli Vidyasagar,et al.  Maximal lyapunov functions and domains of attraction for autonomous nonlinear systems , 1981, Autom..

[37]  Nedialko S. Nedialkov,et al.  Improving the SAT modulo ODE approach to hybrid systems analysis by combining different enclosure methods , 2012, Software & Systems Modeling.

[38]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[39]  Henny B. Sipma,et al.  Constructing invariants for hybrid systems , 2008, Formal Methods Syst. Des..

[40]  Matthew England,et al.  Recent Advances in Real Geometric Reasoning , 2014, ADG.

[41]  Eva M. Navarro-López,et al.  Deadness and how to disprove liveness in hybrid dynamical systems , 2016, Theor. Comput. Sci..

[42]  André Platzer,et al.  Characterizing Algebraic Invariants by Differential Radical Invariants , 2014, TACAS.

[43]  Sumit Gulwani,et al.  Constraint-Based Approach for Analysis of Hybrid Systems , 2008, CAV.

[44]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[45]  Eric Goubault,et al.  Forward Inner-Approximated Reachability of Non-Linear Continuous Systems , 2017, HSCC.

[46]  Martin Berz,et al.  Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models , 1998, Reliab. Comput..

[47]  Chaochen Zhou,et al.  A Calculus for Hybrid CSP , 2010, APLAS.

[48]  KoymansRon Specifying real-time properties with metric temporal logic , 1990 .

[49]  K. Forsman,et al.  Construction of Lyapunov functions using Grobner bases , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[50]  Andreas Podelski,et al.  A Sound and Complete Proof Rule for Region Stability of Hybrid Systems , 2007, HSCC.

[51]  André Platzer,et al.  A Method for Invariant Generation for Polynomial Continuous Systems , 2016, VMCAI.

[52]  Lawrence C. Paulson,et al.  MetiTarski: Past and Future , 2012, ITP.

[53]  Wei Chen,et al.  dReach: δ-Reachability Analysis for Hybrid Systems , 2015, TACAS.

[54]  Liang Zou,et al.  An Improved HHL Prover: An Interactive Theorem Prover for Hybrid Systems , 2015, ICFEM.

[55]  James Kapinski,et al.  Simulation-Driven Reachability Using Matrix Measures , 2017, ACM Trans. Embed. Comput. Syst..

[56]  Arnaldo Vieira Moura,et al.  Generating invariants for non-linear hybrid systems , 2015, Theor. Comput. Sci..

[57]  Taylor T. Johnson,et al.  Operational Models for Piecewise-Smooth Systems , 2017, ACM Trans. Embed. Comput. Syst..

[58]  Adam Strzeboski Cylindrical decomposition for systems transcendental in the first variable , 2011 .

[59]  Pavithra Prabhakar,et al.  Abstraction Based Model-Checking of Stability of Hybrid Systems , 2013, CAV.

[60]  Stefan Ratschan,et al.  Providing a Basin of Attraction to a Target Region of Polynomial Systems by Computation of Lyapunov-Like Functions , 2010, SIAM J. Control. Optim..

[61]  Andrea Asperti,et al.  A Bi-Directional Refinement Algorithm for the Calculus of (Co)Inductive Constructions , 2012, Log. Methods Comput. Sci..

[62]  Andreas Podelski,et al.  Composing Stability Proofs for Hybrid Systems , 2011, FORMATS.

[63]  Assia Mahboubi Programming and certifying a CAD algorithm in the Coq system , 2005, Mathematics, Algorithms, Proofs.

[64]  Sriram Sankaranarayanan,et al.  Finding non-polynomial positive invariants and lyapunov functions for polynomial systems through Darboux polynomials , 2014, 2014 American Control Conference.

[65]  Antoine Girard,et al.  SpaceEx: Scalable Verification of Hybrid Systems , 2011, CAV.

[66]  Naijun Zhan,et al.  Computing semi-algebraic invariants for polynomial dynamical systems , 2011, 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT).

[67]  Fabian Immler,et al.  Verified Reachability Analysis of Continuous Systems , 2015, TACAS.

[68]  John N. Maidens,et al.  Trajectory-based reachability analysis of switched nonlinear systems using matrix measures , 2014, 53rd IEEE Conference on Decision and Control.

[69]  Rebekah Carter,et al.  Verification of liveness properties on hybrid dynamical systems , 2013 .

[70]  John N. Maidens,et al.  Reachability Analysis of Nonlinear Systems Using Matrix Measures , 2015, IEEE Transactions on Automatic Control.

[71]  Bin Gu,et al.  Formal Verification of a Descent Guidance Control Program of a Lunar Lander , 2014, FM.

[72]  André Platzer,et al.  A hierarchy of proof rules for checking positive invariance of algebraic and semi-algebraic sets , 2017, Comput. Lang. Syst. Struct..

[73]  Sriram Sankaranarayanan,et al.  Automatic invariant generation for hybrid systems using ideal fixed points , 2010, HSCC '10.

[74]  Daniel Richardson,et al.  Some undecidable problems involving elementary functions of a real variable , 1969, Journal of Symbolic Logic.

[75]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[76]  Davison,et al.  A computational method for determining quadratic Lyapunov Functions for nonlinear systems , 1970 .

[77]  Alberto Bemporad,et al.  Hybrid Systems: Computation and Control, 10th International Workshop, HSCC 2007, Pisa, Italy, April 3-5, 2007, Proceedings , 2007, HSCC.

[78]  Rupak Majumdar,et al.  Tools and Algorithms for the Construction and Analysis of Systems , 1997, Lecture Notes in Computer Science.

[79]  Adam W. Strzebonski Cylindrical decomposition for systems transcendental in the first variable , 2011, J. Symb. Comput..

[80]  Nathan Fulton,et al.  KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems , 2015, CADE.

[81]  Paul B. Jackson,et al.  Direct Formal Verification of Liveness Properties in Continuous and Hybrid Dynamical Systems , 2015, FM.

[82]  Shuji Doshita,et al.  Automated Phase Portrait Analysis by Integrating Qualitative and Quantitative Analysis , 1991, AAAI.