Probing Oxygen Reduction Reaction Kinetics of Sr-Doped LaMnO3 Supported on Y2O3-Stabilized ZrO2 EIS of Dense, Thin-Film Microelectrodes

Dense microelectrodes fabricated with well-defined microstructures and geometries using microelectronic fabrication techniques were studied using electrochemical impedance spectroscopy (EIS) to investigate the rate-limiting reaction step(s) for oxygen reduction reaction (ORR) on the La 0.8 Sr 0.2 MnO 3 (LSM)/8 mol % Y 2 O 3 -stabilized ZrO 2 (8YSZ) system. At least four distinct reaction processes were observed for ORR on LSM/8YSZ under ambient PO 2 and at intermediate temperatures, which have been assigned tentatively to: (i) ion transport in 8YSZ with an average activation energy of 1.16 ± 0.02 eV, (ii) a surface diffusion process on LSM with activation energy in the range from 1.34 to 1.65 ± 0.03 eV, (iii) at least one surface chemical process on LSM with activation energies in the range from 1.71 to 1.88 ± 0.02 eV and an average capacitance value of 3.4 X 10 -4 F/cm 2 , and (iv) a mixed bulk/three-phase boundary (TPB) charge transfer process with activation energies in the range from 2.42 ± 0.02 to 3.05 ± 0.03 eV and an average capacitance value of 3.2 X 10 -3 F/cm 2 . This study suggests that the overall ORR rate may be limited by mixed bulk/TPB charge transfer processes below 700°C and surface chemical reactions above 700°C. The ORR current contributions from the bulk oxide ion transport and TPB incorporation path was estimated by correlating microelectrode geometry to impedance data.

[1]  Meilin Liu,et al.  Characteristic Thickness for a Dense La[sub 0.8]Sr[sub 0.2]MnO[sub 3] Electrode , 2005 .

[2]  J. Fergus Metallic interconnects for solid oxide fuel cells , 2005 .

[3]  Meilin Liu,et al.  A photolithographic process for investigation of electrode reaction sites in solid oxide fuel cells , 2005 .

[4]  Subhash C. Singhal,et al.  Estimation of Charge-Transfer Resistivity of La0.8Sr0.2MnO3 Cathode on Y 0.16Zr0.84 O 2 Electrolyte Using Patterned Electrodes , 2005 .

[5]  David Beljonne,et al.  Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. , 2004, Chemical reviews.

[6]  K. Natesan,et al.  Corrosion of metallic interconnects for SOFC in fuel gases , 2004 .

[7]  S. Chan,et al.  Identification of O2 reduction processes at yttria stabilized zirconia|doped lanthanum manganite interface , 2003 .

[8]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[9]  H. Habermeier,et al.  The geometry dependence of the polarization resistance of Sr-doped LaMnO3 microelectrodes on yttria-stabilized zirconia , 2002 .

[10]  Jürgen Fleig,et al.  The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data , 2002 .

[11]  S. Jiang,et al.  Electrode behaviour at (La,Sr)MnO3/Y2O3–ZrO2 interface by electrochemical impedance spectroscopy , 2002 .

[12]  K. Kawamura,et al.  Determination of Oxygen Vacancy Concentration in a Thin Film of La0.6Sr0.4CoO3 − δ by an Electrochemical Method , 2002 .

[13]  Tohru Kato,et al.  Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique , 2002 .

[14]  San Ping Jiang,et al.  A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes , 2002 .

[15]  S. Simner,et al.  Compressive mica seals for SOFC applications , 2001 .

[16]  Koichi Kobayashi,et al.  Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy , 2001 .

[17]  Mogens Bjerg Mogensen,et al.  Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes , 2001 .

[18]  B. Steele,et al.  Material science and engineering: The enabling technology for the commercialisation of fuel cell systems , 2001 .

[19]  S. Jiang,et al.  Use of gaseous Cr species to diagnose surface and bulk process for O2 reduction in solid oxide fuel cells , 2001 .

[20]  S. Jiang,et al.  Origin of the initial polarization behavior of Sr-doped LaMnO3 for O2 reduction in solid oxide fuel cells , 2001 .

[21]  H. Fukunaga,et al.  Cathodic reaction mechanism of dense La0.6Sr0.4CoO3 and La0.81Sr0.09MnO3 electrodes for solid oxide fuel cells , 2000 .

[22]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[23]  Raymond Anthony George,et al.  Status of tubular SOFC field unit demonstrations , 2000 .

[24]  R. A. De Souza,et al.  A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ , 2000 .

[25]  C. Bagger,et al.  A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance , 1999 .

[26]  J. MacManus‐Driscoll,et al.  Oxygen tracer diffusion in undoped lanthanum manganites , 1999 .

[27]  Thermodynamic Stability and Interfacial Impedance of Solid-Electrolyte Cells with Noble-Metal Electrodes , 1999 .

[28]  Y. Takeda,et al.  Electrical conductivity of the ZrO2–Ln2O3 (Ln=lanthanides) system , 1999 .

[29]  San Ping Jiang,et al.  The electrochemical performance of LSM/zirconia–yttria interface as a function of a-site non-stoichiometry and cathodic current treatment , 1999 .

[30]  Jürgen Fleig,et al.  Geometry Dependence of Cathode Polarization in Solid Oxide Fuel Cells Investigated by Defined Sr ‐ Doped LaMnO3 Microelectrodes , 1999 .

[31]  Ludwig J. Gauckler,et al.  La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)|YSZ system , 1998 .

[32]  Tohru Kato,et al.  Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3 − x /Yttria‐Stabilized Zirconia Interface by Secondary‐Ion Mass Spectrometry , 1998 .

[33]  Stuart B. Adler,et al.  Mechanism and kinetics of oxygen reduction on porous La1−xSrxCoO3−δ electrodes , 1998 .

[34]  R. Chakalova,et al.  Influence of the substrate on growth and magnetoresistance of La0.7Ca0.3MnOz thin films deposited by magnetron sputtering , 1998 .

[35]  S. Barnett,et al.  Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study , 1998 .

[36]  Z. Ogumi,et al.  Preparation of Perovskite‐Type La1 − x Sr x MnO3 Films by Vapor‐Phase Processes and Their Electrochemical Properties II. Effects of Doping Strontium to on the Electrode Properties , 1998 .

[37]  H. Tagawa,et al.  High temperature electrocatalytic properties of the SOFC air electrode La0.8Sr0.2MnO3/YSZ , 1998 .

[38]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion , 1998 .

[39]  Z. Ogumi,et al.  Preparation of Perovskite‐Type La1 − x Sr x MnO3 Films by Vapor‐Phase Processes and Their Electrochemical Properties , 1997 .

[40]  C. Rao,et al.  Insulator–Metal Transitions, Giant Magnetoresistance, and Related Aspects of the Cation-Deficient $LaMnO_3$ Compositions $La_{1-\delta}MnO_3$ and $LaMn_{1-\delta'}O_3$ , 1996 .

[41]  M. Dokiya,et al.  Oxygen tracer diffusion coefficient of (La, Sr)MnO3 ± δ , 1996 .

[42]  M. Odgaard,et al.  SOFC cathode kinetics investigated by the use of cone shaped electrodes: The effect of polarization and mechanical load , 1996 .

[43]  Koichi Yamada,et al.  Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes , 1996 .

[44]  A. Mcevoy,et al.  A study on the La1 − xSrxMnO3 oxygen cathode , 1996 .

[45]  Minoru Inaba,et al.  Crystal Structure and Metal–Insulator Transition of La1−xSrxCoO3 , 1996 .

[46]  A. Hammouche,et al.  Impedance spectroscopy analysis of La1 − xSritxMnO3-yttria-stabilized zirconia electrode kinetics , 1995 .

[47]  H. Tagawa,et al.  High temperature electrical properties of the perovskite-type oxide La1 − xSrxMnO3 − d , 1995 .

[48]  J. Diard,et al.  Method for Determining the Faradaic Impedance of an Electrode Reaction: Application to Metal Corrosion Rate Measurements , 1995 .

[49]  T. Pagnier,et al.  Oxygen Reduction at La0.5Sr0.5MnO3 Thin Film/Yttria‐Stabilized Zirconia Interface Studied by Impedance Spectroscopy , 1994 .

[50]  Harumi Yokokawa,et al.  Oxygen permeation modelling of perovskites , 1993 .

[51]  Sukhvinder P.S. Badwal,et al.  Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity , 1992 .

[52]  S. Barnett,et al.  Deposition and properties of yttria‐stabilized zirconia thin films using reactive direct current magnetron sputtering , 1991 .

[53]  A. Hammouche,et al.  Electrocatalytic Properties and Nonstoichiometry of the High Temperature Air Electrode La1 − x Sr x MnO3 , 1991 .

[54]  Y. Takeda,et al.  Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia , 1987 .

[55]  Masanori Kato,et al.  Crystal growth and characterization of La1−xMxMnO3 (M = Ca, Sr) , 1987 .

[56]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[57]  M. Verkerk,et al.  Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes II. A-C Impedance Study , 1983 .

[58]  M. Verkerk,et al.  Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes. I. Electrode Resistance by D-C Polarization , 1983 .

[59]  G. Fisher,et al.  Oxygen interactions with the Pt(111) surface , 1980 .

[60]  J. Gland Molecular and atomic adsorption of oxygen on the Pt(111) and Pt(S)-12(111) × (111) surfaces , 1980 .

[61]  J. E. Bauerle Study of solid electrolyte polarization by a complex admittance method , 1969 .

[62]  R. Gomer,et al.  Adsorption of oxygen on platinum , 1968 .