Hopf Bifurcation Analysis of a Two-Dimensional Simplified Hodgkin–Huxley Model

This paper presents a two-dimensional simplified Hodgkin–Huxley model under exposure to electric fields. The Hopf bifurcations of the simplified Hodgkin–Huxley model are investigated through qualitative analysis and numerical simulations. A necessary and sufficient condition for the existence of Hopf bifurcations is derived, and the conditions for supercritical and subcritical Hopf bifurcations are obtained. Finally, bifurcation diagrams are given for two parameters, and numerical examples are presented to illustrate the effectiveness of the theoretical results.

[1]  Qinsheng Bi,et al.  Slow–Fast Dynamics Behaviors under the Comprehensive Effect of Rest Spike Bistability and Timescale Difference in a Filippov Slow–Fast Modified Chua’s Circuit Model , 2022, Mathematics.

[2]  L. Chua Hodgkin–Huxley equations implies Edge of Chaos Kernel , 2022, Japanese Journal of Applied Physics.

[3]  Zhiguo Zhao,et al.  White-noise-induced double coherence resonances in reduced Hodgkin-Huxley neuron model near subcritical Hopf bifurcation. , 2022, Physical review. E.

[4]  J. A. M. Valle,et al.  Parameter Identification Problem in the Hodgkin-Huxley Model , 2022, Neural Computation.

[5]  Ergin Yilmaz,et al.  Chaotic Signal Induced Delay Decay in Hodgkin-Huxley Neuron , 2021, Appl. Math. Comput..

[6]  Yue Liu,et al.  Implementation of Hodgkin-Huxley Neuron Model With the Novel Memristive Oscillator , 2021, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  Arash Ahmadi,et al.  High Speed and Low Digital Resources Implementation of Hodgkin-Huxley Neuronal Model Using Base-2 Functions , 2021, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Guanrong Chen,et al.  Formation of spiral wave in Hodgkin-Huxley neuron networks with Gamma-distributed synaptic input , 2020, Commun. Nonlinear Sci. Numer. Simul..

[9]  Baranidharan Raman,et al.  Structure-Preserving Numerical Integrators for Hodgkin-Huxley-Type Systems , 2018, SIAM J. Sci. Comput..

[10]  H. Gu,et al.  Different dynamics of repetitive neural spiking induced by inhibitory and excitatory autapses near subcritical Hopf bifurcation , 2020 .

[11]  André H. Erhardt Bifurcation Analysis of a Certain Hodgkin-Huxley Model Depending on Multiple Bifurcation Parameters , 2018, Mathematics.

[12]  Ozgur R Doruk Control of Hopf Bifurcations in Hodgkin-Huxley Neurons by Automatic Temperature Manipulation , 2017 .

[13]  Haitao Yu,et al.  Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay , 2017, Commun. Nonlinear Sci. Numer. Simul..

[14]  Ad Aertsen,et al.  Role of Input Correlations in Shaping the Variability and Noise Correlations of Evoked Activity in the Neocortex , 2015, The Journal of Neuroscience.

[15]  Junzhi Yu,et al.  Bifurcation analysis of a two-dimensional simplified Hodgkin–Huxley model exposed to external electric fields , 2012, Neural Computing and Applications.

[16]  Ran Zhao,et al.  Two-parameter bifurcation in a two-dimensional simplified Hodgkin-Huxley model , 2013, Commun. Nonlinear Sci. Numer. Simul..

[17]  Bin Deng,et al.  Bifurcations in the Hodgkin-Huxley model exposed to DC electric fields , 2012, Neurocomputing.

[18]  L. Ding,et al.  Stabilizing control of Hopf bifurcation in the Hodgkin–Huxley model via washout filter with linear control term , 2010 .

[19]  Yanqiu Che,et al.  Phase-locking and chaos in a silent Hodgkin–Huxley neuron exposed to sinusoidal electric field , 2009 .

[20]  Kazuyuki Aihara,et al.  Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  B. John Oommen,et al.  Spikes annihilation in the Hodgkin-Huxley neuron , 2008, Biological Cybernetics.

[22]  Jiang Wang,et al.  Bifurcation control of the Hodgkin-Huxley equations , 2007 .

[23]  Steven J. Schiff,et al.  Switching between gamma and theta: Dynamic network control using subthreshold electric fields , 2007, Neurocomputing.

[24]  A. Selverston,et al.  Dynamical principles in neuroscience , 2006 .

[25]  Jeff Moehlis,et al.  Canards for a reduction of the Hodgkin-Huxley equations , 2006, Journal of mathematical biology.

[26]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[27]  J. Jefferys,et al.  Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro , 2004, The Journal of physiology.

[28]  Jianzhong Su,et al.  Analysis of a Canard Mechanism by Which Excitatory Synaptic Coupling Can Synchronize Neurons at Low Firing Frequencies , 2004, SIAM J. Appl. Math..

[29]  Yongguang Yu,et al.  Hopf bifurcation in the Lü system , 2003 .

[30]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[31]  Bruce J. Gluckman,et al.  Electric field modulation of synchronization in neuronal networks , 2003, Neurocomputing.

[32]  John Guckenheimer,et al.  Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..

[33]  Shinji Doi,et al.  Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations II. Singularity theoretic approach and highly degenerate bifurcations , 2000, Biological Cybernetics.

[34]  Shinji Doi,et al.  Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations I. Global organization of bistable periodic solutions , 2000, Biological Cybernetics.

[35]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[36]  Teresa Ree Chay,et al.  Electrical bursting and luminal calcium oscillation in excitable cell models , 1996, Biological Cybernetics.

[37]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[38]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[39]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[40]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[41]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[42]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.