In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors

Abstract This paper reports a chemical sensor that consists of a suspended microcantilever and a carbon nanotube (CNT) network that is in situ synthesized on the microcantilever. The in situ synthesis achieves minimized thermal resistance of the interface between the CNTs and the microcantilever, which together with the low thermal mass and the high thermal conductivity allows the sensor to operate in microcalorimeter mode. By heating the CNT networks with an integrated heater, the explosive vapors adsorbed on the CNT surfaces are ignited to deflagration, which releases extra heat to deflect the microcantilever and thus changes the resistance of an integrated piezoresistor. This thermal-mechanical coupling transduction mechanism bridges the heat changes on the CNT networks and the mechanical deflection of the microcantilever. The large surface to volume ratio of CNTs enables fast adsorption of the chemical sensor to explosive vapors and improved equivalent limit of detection (LOD). An equivalent LOD of 2.4 pg is achieved for TNT detection, and run-to-run repeatability and device-to-device reproducibility are better than 4% and 10%. The preliminary results demonstrate the feasibility of development of sensitive CNT chemical sensors using in situ synthesized CNT networks and thermal-mechanical coupling transduction mechanism.

[1]  Yu Sun,et al.  Development of Carbon Nanotube-Based Sensors—A Review , 2007, IEEE Sensors Journal.

[2]  John H T Luong,et al.  Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. , 2006, Analytical chemistry.

[3]  T. Thundat,et al.  Adsorption of trinitrotoluene on uncoated silicon microcantilever surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[4]  T. Thundat,et al.  Detection of adsorbed explosive molecules using thermal response of suspended microfabricated bridges , 2008 .

[5]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[6]  H. Konishi,et al.  Influence of the growth morphology of single-walled carbon nanotubes on gas sensing performance , 2006 .

[7]  M. Penza,et al.  Carbon nanotubes thin films fiber optic and acoustic VOCs sensors: Performances analysis , 2006 .

[8]  Peter J. Hesketh,et al.  Investigation of microcantilever array with ordered nanoporous coatings for selective chemical detection , 2010, Defense + Commercial Sensing.

[9]  T. Thundat,et al.  Detection of trinitrotoluene via deflagration on a microcantilever , 2004 .

[10]  Isabelle Dufour,et al.  Zeolite-modified cantilevers for the sensing of nitrotoluene vapors , 2009 .

[11]  Muhammad Y. Afridi,et al.  Micro-differential scanning calorimeter for combustible gas sensing , 2004 .

[12]  R. Naik,et al.  Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. , 2010, ACS nano.

[13]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[14]  Pengcheng Xu,et al.  Self-assembly and sensing-group graft of pre-modified CNTs on resonant micro-cantilevers for specific detection of volatile organic compound vapors , 2010 .

[15]  G. Abadal,et al.  Nanoporous silicalite-only cantilevers as micromechanical sensors: Fabrication, resonance response and VOCs sensing performance , 2012 .

[16]  June-Ki Park,et al.  100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors , 2010, Nanotechnology.

[17]  Zheyao Wang,et al.  In-Situ Heat Capacity Measurement of Carbon Nanotubes Using Suspended Microstructure-Based Microcalorimetry , 2012, IEEE Transactions on Nanotechnology.

[18]  J. Noh,et al.  Detection of a nerve agent simulant using single-walled carbon nanotube networks: dimethyl-methyl-phosphonate , 2010, Nanotechnology.

[19]  R. Cavicchi,et al.  Rapid-heating of energetic materials using a micro-differential scanning calorimeter , 2011 .

[20]  Arben Merkoçi,et al.  Nanomaterials Based Electrochemical Sensing Applications for Safety and Security , 2012 .

[21]  L.A. Pinnaduwage,et al.  Moore's law in homeland defense: an integrated sensor platform based on silicon microcantilevers , 2005, IEEE Sensors Journal.

[22]  T. Thundat,et al.  Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers , 2003 .

[23]  Bin Wang,et al.  Demonstration of MEMS-based differential scanning calorimetry for determining thermodynamic properties of biomolecules , 2008 .

[24]  Thomas Thundat,et al.  Trace explosive detection using photothermal deflection spectroscopy , 2008 .

[25]  Michele Penza,et al.  Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors , 2008 .

[26]  Joseph Wang,et al.  Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6-trinitrotoluene , 2004 .

[27]  Zheyao Wang,et al.  Synthesis of Carbon Nanotubes on Suspending Microstructures by Rapid Local Laser Heating , 2011, IEEE Sensors Journal.

[28]  D. Pribat,et al.  Carbon nanotubes based transistors as gas sensors: State of the art and critical review , 2009 .

[29]  Michele Penza,et al.  Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications , 2009 .

[30]  Jianping Lu,et al.  Noncovalent functionalization of carbon nanotubes by aromatic organic molecules , 2003 .

[31]  T. Thundat,et al.  Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges. , 2009, The Review of scientific instruments.

[32]  N. Myung,et al.  Recent progress in carbon nanotube-based gas sensors , 2008, Nanotechnology.

[33]  Justyn Jaworski,et al.  Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. , 2011, ACS nano.

[34]  R. A. McGill,et al.  Detection of 2,4-dinitrotoluene using microcantilever sensors , 2004 .

[35]  Bin Zhao,et al.  Electronic properties of single-walled carbon nanotube networks. , 2005, Journal of the American Chemical Society.

[36]  B. Rogers,et al.  Explosives: A microsensor for trinitrotoluene vapour , 2003, Nature.

[37]  M. S. Mannan,et al.  Miniaturized calorimeter for thermal screening of energetic materials , 2010, Microelectron. J..

[38]  Tianhong Cui,et al.  A thin-film transistor based acetylcholine sensor using self-assembled carbon nanotubes and SiO2 nanoparticles , 2008 .

[39]  M. Terrones Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes , 2003 .

[40]  Seunghun Hong,et al.  Universal parameters for carbon nanotube network-based sensors: can nanotube sensors be reproducible? , 2011, ACS nano.

[41]  L. A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995) , 1995 .

[42]  Kyung-Hwa Yoo,et al.  Electrically refreshable carbon-nanotube-based gas sensors , 2007 .

[43]  M. Meyyappan,et al.  Carbon Nanotube Sensors for Gas and Organic Vapor Detection , 2003 .

[44]  Chongwu Zhou,et al.  2,4,6‐Trinitrotoluene (TNT) Chemical Sensing Based on Aligned Single‐Walled Carbon Nanotubes and ZnO Nanowires , 2010, Advanced materials.

[45]  Zheyao Wang,et al.  A Front-Side Released Single Crystalline Silicon Piezoresistive Microcantilever Sensor , 2009 .

[46]  Rodney Andrews,et al.  Multi-walled carbon nanotube arrays for gas sensing applications , 2008, Nanotechnology.