Free-space confocal magneto-optical spectroscopies at milliKelvin temperatures

We describe the operation of a free-space confocal optical microscope operated in a dilution refrigerator. The microscope is installed on a cold insertable probe to enable fast sample exchange while the refrigerator is held at low temperatures. A vector magnet provides a 6 T field normal to the sample and 1 T fields at arbitrary angles. A variety of optical microscopies and spectroscopies, including photoluminescence, Raman, magneto-optical Kerr effect, and spin relaxometry measurements are described, and some of the challenges associated with performing these measurements at milliKelvin temperatures are explored.

[1]  K. Berggren,et al.  Detecting Sub-GeV Dark Matter with Superconducting Nanowires. , 2019, Physical review letters.

[2]  D. Koelle,et al.  Hot spots and waves in Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks: a study by low temperature scanning laser microscopy. , 2008, Physical review letters.

[3]  Wei Zhang,et al.  Quantum teleportation with independent sources and prior entanglement distribution over a network , 2016, Nature Photonics.

[4]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[5]  D. Goldhaber-Gordon,et al.  Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator. , 2012, The Review of scientific instruments.

[6]  A.T.A.M. de Waele,et al.  Basic Operation of Cryocoolers and Related Thermal Machines , 2011 .

[7]  A. Lita,et al.  State-independent quantum tomography of a single-photon state by photon-number-resolving measurements , 2019, 1906.02093.

[8]  Ronald L. Walsworth,et al.  Control and local measurement of the spin chemical potential in a magnetic insulator , 2016, Science.

[9]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[10]  Sae Woo Nam,et al.  Quantum key distribution at 1550 nm with twin superconducting single-photon detectors , 2006 .

[11]  J. P. Dehollain,et al.  Vibration-induced electrical noise in a cryogen-free dilution refrigerator: Characterization, mitigation, and impact on qubit coherence. , 2016, The Review of scientific instruments.

[12]  U. Andersen,et al.  Quantum-enhanced continuous-wave stimulated Raman scattering spectroscopy , 2020, 2002.04674.

[13]  E. Johnston-Halperin,et al.  Predicted strong coupling of solid-state spins via a single magnon mode , 2020, 2003.04341.

[14]  Huaiyi Ding,et al.  Probing Exciton Complexes and Charge Distribution in Inkslab-Like WSe2 Homojunction. , 2018, ACS nano.

[15]  Joseph P. Heremans,et al.  Quantum Sensing for High Energy Physics , 2018, 1803.11306.

[16]  Yasuhiko Arakawa,et al.  Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors , 2015, Scientific Reports.

[17]  A. Laucht,et al.  Spin thermometry and spin relaxation of optically detected Cr3+ ions in ruby Al2O3 , 2020, 2007.07493.

[18]  E. Olivieri,et al.  Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements , 2017, 1703.08957.

[19]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[20]  Varun B Verma,et al.  Kilopixel array of superconducting nanowire single-photon detectors. , 2019, Optics express.

[21]  Brian E. Lerner,et al.  Magnetostriction of α-RuCl3 Flakes in the Zigzag Phase , 2021, The Journal of Physical Chemistry C.

[22]  Betty A. Young,et al.  Imaging the Oblique Propagation of Electrons in Germanium Crystals at Low Temperature and Low Electric Field , 2015, 1505.00052.

[23]  A V Ustinov,et al.  Josephson behavior of phase-slip lines in wide superconducting strips. , 2003, Physical review letters.

[24]  R. Pooser,et al.  Quantum Sensing with Squeezed Light , 2019, ACS Photonics.

[25]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[26]  R. Pooser,et al.  Squeezing Noise in Microscopy with Quantum Light , 2020 .

[27]  C. M. Natarajan,et al.  Superconducting nanowire single-photon detectors: physics and applications , 2012, 1204.5560.

[28]  Noel H. Wan,et al.  Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. , 2018, Physical review letters.

[29]  Jie Shan,et al.  Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures , 2019, Nature Electronics.

[30]  Y. Oreg,et al.  Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions , 2012, Nature Physics.

[31]  A. Lita,et al.  Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device , 2019, Science Advances.

[32]  V. Moscatelli,et al.  Vibration-free cryostat for low-noise applications of a pulse tube cryocooler , 2006 .

[33]  K. Berggren,et al.  Multi-Element Superconducting Nanowire Single-Photon Detector , 2007, IEEE Transactions on Applied Superconductivity.

[34]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[35]  K. Berggren,et al.  Single-photon imager based on a superconducting nanowire delay line , 2017, Nature Photonics.

[36]  R. Walsworth,et al.  Sensitivity optimization for NV-diamond magnetometry , 2019, 1903.08176.

[37]  Emma M. Simmerman,et al.  A Reconfigurable Quantum Local Area Network Over Deployed Fiber , 2021, 2021 Conference on Lasers and Electro-Optics (CLEO).

[38]  M. Markham,et al.  All-Optical Control of the Silicon-Vacancy Spin in Diamond at Millikelvin Temperatures. , 2017, Physical review letters.

[39]  D. Koelle,et al.  Edge superconductivity in Nb thin film microbridges revealed by electric transport measurements and visualized by scanning laser microscopy , 2013 .

[40]  Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field. , 2010, The Review of scientific instruments.

[41]  Massimiliano Proietti,et al.  Measurement-Device-Independent Verification of Quantum Channels. , 2019, Physical review letters.

[42]  Jeffrey H. Shapiro,et al.  Experimental quantum key distribution at 1.3 gigabit-per-second secret-key rate over a 10 dB loss channel , 2018 .

[43]  Aaron J. Miller,et al.  Multifunctional Superconducting Nanowire Quantum Sensors , 2021, Physical Review Applied.

[44]  Sandip Ghosh,et al.  A twisted periscope arrangement for transporting elliptically polarized light without change in its polarization state. , 2010, The Review of scientific instruments.

[45]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[46]  T. Oosterkamp,et al.  Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK. , 2013, The Review of scientific instruments.

[47]  Aaron J. Miller,et al.  Waveform analysis of a large-area superconducting nanowire single photon detector , 2020 .

[48]  Betty A. Young,et al.  High-field spatial imaging of charge transport in silicon at low temperature , 2018, AIP Advances.

[49]  R. Pooser,et al.  Truncated Nonlinear Interferometry for Quantum-Enhanced Atomic Force Microscopy. , 2019, Physical review letters.

[50]  B. Hauer,et al.  Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator. , 2014, The Review of scientific instruments.