Crystal structures explain functional properties of two E. coli porins

Porins form aqueous channels that aid the diffusion of small hydrophilic molecules across the outer membrane of Gram-negative bacteria. The crystal structures of matrix porin and phosphoporin both reveal trimers of identical subunits, each subunit consisting of a 16-stranded anti-parallel β-barrel containing a pore. A long loop inside the barrel contributes to a constriction of the channel where the charge distribution affects ion selectivity. The structures explain at the molecular level functional characteristics and their alterations by known mutations.

[1]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[2]  J. Pflugrath,et al.  Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography , 1987 .

[3]  K. Gehring,et al.  Structural architecture of an outer membrane channel as determined by electron crystallography , 1991, Nature.

[4]  G. Schulz,et al.  The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution , 1991, FEBS letters.

[5]  W. Rocque,et al.  Structure and function of an OmpC deletion mutant porin from Escherichia coli K-12. , 1990, Biochemistry.

[6]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[7]  M G Rossmann,et al.  The molecular replacement method. , 1990, Acta crystallographica. Section A, Foundations of crystallography.

[8]  H. Nikaido,et al.  Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins , 1983, Journal of bacteriology.

[9]  Rosenbusch Jp Structural and functional properties of porin channels in E. coli outer membranes. , 1990 .

[10]  R. Henderson,et al.  Three-dimensional model of purple membrane obtained by electron microscopy , 1975, Nature.

[11]  A. Engel,et al.  Localization of the lipopolysaccharides in metal-shadowed reconstituted lipid-porin membranes , 1990 .

[12]  J. Tommassen,et al.  Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. , 1991, Journal of molecular biology.

[13]  H. Nikaido,et al.  Determinants of OmpF porin antigenicity and structure. , 1990, The Journal of biological chemistry.

[14]  A C Steven,et al.  Ultrastructure of a periodic protein layer in the outer membrane of Escherichia coli , 1977, The Journal of cell biology.

[15]  Cyrus Chothia,et al.  Structural principles of α/β barrel proteins: The packing of the interior of the sheet , 1989 .

[16]  J. Priestle,et al.  RIBBON: a stereo cartoon drawing program for proteins , 1988 .

[17]  L. K. Buehler,et al.  Plasticity of Escherichia coli porin channels. Dependence of their conductance on strain and lipid environment. , 1991, The Journal of biological chemistry.

[18]  F. Pattus,et al.  The selectivity filter of voltage‐dependent channels formed by phosphoporin (PhoE protein) from E. coli. , 1986, The EMBO journal.

[19]  B. Lugtenberg,et al.  Role of the Arg158 residue of the outer membrane PhoE pore protein of Escherichia coli K 12 in bacteriophage TC45 recognition and in channel characteristics. , 1985, European journal of biochemistry.

[20]  J. Lakey,et al.  The bacterial porin superfamily: sequence alignment and structure prediction , 1991, Molecular microbiology.

[21]  H. Nikaido,et al.  Porins and specific channels of bacterial outer membranes , 1992, Molecular microbiology.

[22]  J. Tommassen,et al.  One single lysine residue is responsible for the special interaction between polyphosphate and the outer membrane porin PhoE of Escherichia coli. , 1989, The Journal of biological chemistry.

[23]  G. Schulz,et al.  Molecular architecture and electrostatic properties of a bacterial porin. , 1991, Science.

[24]  B. Jap Molecular design of PhoE porin and its functional consequences. , 1989, Journal of molecular biology.

[25]  R. Hancock Role of porins in outer membrane permeability , 1987, Journal of bacteriology.

[26]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[27]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[28]  G. Rummel,et al.  Trigonal crystals of porin from Escherichia coli. , 1991, Journal of molecular biology.

[29]  J. Rosenbusch Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. , 1974, The Journal of biological chemistry.

[30]  J. Rosenbusch,et al.  Prokaryotic and eukaryotic porins , 1991 .

[31]  B. Sampson,et al.  Mutations that alter the pore function of the OmpF porin of Escherichia coli K12. , 1988, Journal of molecular biology.

[32]  J. Lakey,et al.  ompC mutants which allow growth on maltodextrins show increased channel size and greater voltage sensitivity , 1991, FEBS letters.

[33]  G. Schulz,et al.  The three‐dimensional structure of porin from Rhodobacter capsulatus at 3 Å resolution , 1990, FEBS letters.

[34]  H. Nikaido,et al.  Effect on solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli , 1981, The Journal of general physiology.

[35]  H. Michel Crystallization of membrane proteins , 1983 .

[36]  J. Jenkins,et al.  X-ray diffraction analysis of matrix porin, an integral membrane protein from Escherichia coli outer membranes. , 1983, Journal of molecular biology.

[37]  F. Jähnig,et al.  Models for the structure of outer-membrane proteins of Escherichia coli derived from raman spectroscopy and prediction methods. , 1986, Journal of molecular biology.

[38]  D. Tsernoglou,et al.  A common channel-forming motif in evolutionarily distant porins. , 1991, Journal of structural biology.

[39]  J. Rosenbusch,et al.  Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Misra,et al.  Genetic identification of the pore domain of the OmpC porin of Escherichia coli K-12 , 1988, Journal of bacteriology.

[41]  R. Benz,et al.  Ion selectivity of gram-negative bacterial porins , 1985, Journal of bacteriology.

[42]  J. Rosenbusch,et al.  Porin channel triplets merge into single outlets in Escherichia coli outer membranes , 1985, Nature.

[43]  J. Tommassen,et al.  Topology of outer membrane pore protein PhoE of Escherichia coli. Identification of cell surface-exposed amino acids with the aid of monoclonal antibodies. , 1986, The Journal of biological chemistry.

[44]  G. Büldt,et al.  Densely packed β-structure at the protein-lipid interface of porin is revealed by high-resolution cryo-electron microscopy , 1989 .

[45]  M. Inouye,et al.  A comparative study on the genes for three porins of the Escherichia coli outer membrane. DNA sequence of the osmoregulated ompC gene. , 1983, The Journal of biological chemistry.

[46]  J. Deisenhofer,et al.  The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis , 1989, Science.

[47]  B. Jap,et al.  Biophysics of the structure and function of porins , 1990, Quarterly Reviews of Biophysics.

[48]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[49]  D. Engelman,et al.  Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. , 1983, Journal of molecular biology.

[50]  F. Quiocho,et al.  The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. , 1992 .

[51]  K. Downing,et al.  Structure of PhoE porin in projection at 3.5 A resolution. , 1990, Journal of structural biology.