Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory

Abstract In this paper, we present an effectively numerical approach based on isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) for geometrically nonlinear analysis of laminated composite plates. The HSDT allows us to approximate displacement field that ensures by itself the realistic shear strain energy part without shear correction factors (SCFs). IGA utilizing basis functions namely B-splines or non-uniform rational B-splines (NURBS) enables to satisfy easily the stringent continuity requirement of the HSDT model without any additional variables. The nonlinearity of the plates is formed in the total Lagrange approach based on the small strain assumptions. Numerous numerical validations for the isotropic, orthotropic, cross-ply and angle-ply laminated plates are provided to demonstrate the effectiveness of the proposed method.

[1]  Hung Nguyen-Xuan,et al.  Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS‐based isogeometric approach , 2012 .

[2]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[3]  L. Beirao da Veiga,et al.  An isogeometric method for the Reissner-Mindlin plate bending problem , 2011, 1106.4436.

[4]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[5]  Hung Nguyen-Xuan,et al.  An Edge-Based Smoothed Discrete Shear Gap Method Using the C0-Type Higher-Order Shear Deformation Theory for Analysis of Laminated Composite Plates , 2015 .

[6]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[7]  A Mixed Finite Element for the Nonlinear Bending Analysis of Laminated Composite Plates Based on FSDT , 2008 .

[8]  Chien H. Thai,et al.  Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements , 2015 .

[9]  Stéphane Bordas,et al.  Isogeometric analysis of functionally graded plates using a refined plate theory , 2014 .

[10]  Rakesh K. Kapania,et al.  Geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates , 2012 .

[11]  Stéphane Bordas,et al.  Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory , 2014 .

[12]  J. N. Reddy,et al.  Geometrically nonlinear transient analysis of laminated composite plates , 1983 .

[13]  Tarun Kant,et al.  Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory , 2002 .

[14]  Tuan Le-Manh,et al.  Postbuckling of laminated composite plates using NURBS-based isogeometric analysis , 2014 .

[15]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[16]  J. B. Kennedy,et al.  Nonlinear Behavior of Symmetrically Laminated Plates , 1975 .

[17]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[18]  N.G.R. Iyengar,et al.  A C0ELEMENT FOR THE FREE VIBRATION ANALYSIS OF LAMINATED COMPOSITE PLATES , 1996 .

[19]  T. Chau-Dinh,et al.  Geometrically nonlinear analysis of composite plates and shells via a quadrilateral element with good coarse-mesh accuracy , 2014 .

[20]  Armando Miguel Awruch,et al.  NURBS-based three-dimensional analysis of geometrically nonlinear elastic structures , 2014 .

[21]  Hung Nguyen-Xuan,et al.  Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach , 2014 .

[22]  Hung Nguyen-Xuan,et al.  An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates , 2013 .

[23]  J. N. Reddy,et al.  Exact solutions for the transient response of symmetric cross-ply laminates using a higher-order plate theory , 1989 .

[24]  Y. K. Cheung,et al.  Geometric nonlinear analysis of thin plates by a refined nonlinear non-conforming triangular plate element , 2003 .

[25]  Leonard R. Herrmann,et al.  Finite-Element Bending Analysis for Plates , 1967 .

[26]  Saeed Shojaee,et al.  Free vibration analysis of thin plates by using a NURBS-based isogeometric approach , 2012 .

[27]  Eduardo N. DVORKINt SHORT COMMUNICATION MINDLIN/REISSNER PLATE THEORY AND A MIXED INTERPOLATION A FOUR-NODE PLATE BENDING ELEMENT BASED ON , 1985 .

[28]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[29]  K. S. Kim,et al.  Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements , 2006 .

[30]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[31]  Jiye Chen,et al.  Linear transient analysis of rectangular laminated plates by a finite strip-mode superposition method , 1996 .

[32]  Tarun Kant,et al.  C0 Finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory , 1992 .

[33]  Loc V. Tran,et al.  Isogeometric analysis of functionally graded plates using higher-order shear deformation theory , 2013 .

[34]  Erasmo Carrera,et al.  Analysis of thickness locking in classical, refined and mixed multilayered plate theories , 2008 .

[35]  Erasmo Carrera,et al.  Analysis of thickness locking in classical, refined and mixed theories for layered shells , 2008 .

[36]  Hung Nguyen-Xuan,et al.  Isogeometric analysis of laminated composite plates based on a four-variable refined plate theory , 2014 .

[37]  E. Hinton,et al.  Finite element analysis of geometrically nonlinear plate behaviour using a mindlin formulation , 1980 .

[38]  Manfred Bischoff,et al.  Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .

[39]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[40]  J. A. Stricklin,et al.  A rapidly converging triangular plate element , 1969 .

[41]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[42]  Hung Nguyen-Xuan,et al.  Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory , 2013 .

[43]  Jeeoot Singh,et al.  Nonlinear flexural analysis of laminated composite plates using RBF based meshless method , 2012 .

[44]  António J.M. Ferreira,et al.  Analysis of Composite Plates Using a Layerwise Theory and Multiquadrics Discretization , 2005 .

[45]  J. Reddy Analysis of functionally graded plates , 2000 .

[46]  D. Choi,et al.  Finite element formulation of various four unknown shear deformation theories for functionally graded plates , 2013 .

[47]  Hung Nguyen-Xuan,et al.  Isogeometric Analysis of Laminated Composite Plates Using the Higher-Order Shear Deformation Theory , 2015 .

[48]  J. N. Reddy,et al.  A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates , 1986 .

[49]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[50]  Erasmo Carrera,et al.  Evaluation of Layerwise Mixed Theories for Laminated Plates Analysis , 1998 .

[51]  Zafer Gürdal,et al.  A layerwise theory for laminated composites in the framework of isogeometric analysis , 2014 .

[52]  Samuel Levy,et al.  Square plate with clamped edges under normal pressure producing large deflections , 1942 .

[53]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[54]  D. J. Dawe,et al.  Nonlinear transient analysis of rectangular composite laminated plates , 2000 .

[55]  A. K. Noor,et al.  Free vibrations of multilayered composite plates. , 1973 .

[56]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.