Optimal Quantum Filtering and Quantum Feedback Control

Quantum mechanical systems exhibit an inherently probabilistic nature upon measurement. Using a quantum noise model to describe the stochastic evolution of the open quantum system and working in parallel with classical indeterministic control theory, we present the theory of nonlinear optimal quantum feedback control. The resulting quantum Bellman equation is then applied to the explicitly solvable quantum linear-quadratic-Gaussian (LQG) problem which emphasizes many similarities with the corresponding classical control problem.

[1]  Herschel Rabitz,et al.  Optimal control of quantum non-Markovian dissipation: reduced Liouville-space theory. , 2004, The Journal of chemical physics.

[2]  Masamichi Takesaki,et al.  Conditional Expectations in von Neumann Algebras , 1972 .

[3]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[4]  Luigi Accardi,et al.  The weak coupling limit as a quantum functional central limit , 1990 .

[5]  H M Wiseman,et al.  Capture and release of a conditional state of a cavity QED system by quantum feedback. , 2002, Physical review letters.

[6]  Kurt Jacobs,et al.  Feedback cooling of a nanomechanical resonator , 2003 .

[7]  V. P. Belavkin,et al.  On the duality of quantum filtering and optimal feedback control in quantum open linear dynamical systems , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[8]  Andrew J. Landahl,et al.  Continuous quantum error correction via quantum feedback control , 2002 .

[9]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[10]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[11]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[12]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[13]  Kurt Jacobs,et al.  Information, disturbance and Hamiltonian quantum feedback control , 2001 .

[14]  V. P. Belavkin,et al.  Quantum Filtering of Markov Signals with White Quantum Noise , 2005, quant-ph/0512091.

[15]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[16]  R. de Vivie-Riedle,et al.  Quantum computation with vibrationally excited molecules. , 2002, Physical review letters.

[17]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[18]  R. F. Werner,et al.  On quantum error-correction by classical feedback in discrete time , 2004 .

[19]  M. R. James,et al.  Risk-sensitive optimal control of quantum systems , 2004 .

[20]  Hideo Mabuchi,et al.  Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry. , 2003, Physical review letters.

[21]  V. Belavkin,et al.  Nondemolition observation of a free quantum particle. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[22]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[23]  Viacheslav P. Belavkin Optimal Measurement and Control in Quantum Dynamical Systems , 2005 .

[24]  Gerard J. Milburn,et al.  Practical scheme for error control using feedback , 2004 .

[25]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[26]  G. J. Milburn,et al.  Quantum error correction for continuously detected errors , 2003 .

[27]  V. Belavkin,et al.  Bellman equations for optimal feedback control of qubit states , 2004, quant-ph/0407192.

[28]  Luc Bouten,et al.  Stochastic Schr¨ odinger equations , 2004 .

[29]  L. Accardi,et al.  On the stochastic limit for quantum theory , 1995, 1212.6679.